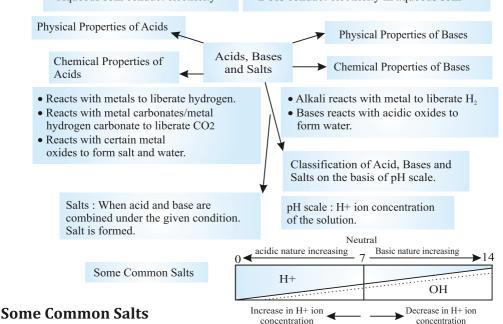


Chapter - 2

Acid, Bases And


Salts

Properties of Acid

- Sour in taste
- Turn blue litmus red
- Give H+ ions in aqueous solution
- Aqueous soln conduct electricity

Properties of Bases

- Bitter in taste
- Turn red litmus blue
- Give OH ions in aqueous solution
- Does conduct electricity in aqueous soln

- Common salt: NaCl
- Sodium hydroxide: NaCl + $2H_2O \longrightarrow NaOH + Cl_2 + H_2$
- Bleaching Powder: $Ca(OH)_2 + Cl_2 \longrightarrow CaOCl_2 + H_2O$
- Baking Soda: $NaCl + H_2O + CO_2 + NH_3 \longrightarrow NH_4Cl + NaHCO_3$
- Wasing Soda: $Na_2CO_3 + 10.H_2O \longrightarrow Na_2CO_3.10H_2O$
- Plaster of Paris: $CaSO_4.2H_2O \xrightarrow{373 \text{ k}} CaSO_4. \frac{1}{2}H_2O + \frac{1}{2}H_2O$
- Gypsum: $CaSO_4$. $\frac{1}{2}H_2O + \frac{1}{2}H_2O \longrightarrow CaSO_4$. $2H_2O$

ACIDS:

- These are the substances which have sour taste.
- They turn blue litmus solution red.
- They give H⁺ ions in aqueous solution.
- The term 'acid' has been derived from the Latin word, acidus, which means sour.

Strong Acids: HCl, H₂SO₄, HNO₃

Weak Acids: CH₃COOH, Oxalic acid, Lactic acid

Concentrated Acid: Having more amount of acid + less amount of water

Dilute Acid: Having more amount of water + less amount of acid

BASES:

- These are the substances which are bitter in taste and soapy in touch.
- They turn red litmus solution blue.
- They give OH⁻ ions in aqueous solution.

Strong Bases : NaOH, KOH, Ca(OH)₂

Weak Bases: NH,OH

Alkalis: These are bases which are soluble in water [NaOH, KOH, Ca(OH)₂].

SALTS:

These are the compounds formed from reaction of acid and base.

Example:

NaCl, KCl.

INDICATORS:

These are the substances which change their colour/smell in different types of substances.

TYPES OF INDICATORS

Natural indicators

- Found in nature in plants.
- Litmus, red
 cabbage leaves
 extract, flowers
 of hydrangea
 plant, turmeric

Synthetic indicators

- These are chemical substances.
- Methyl orange, phenolphthalein

Olfactory indicators

- These substances have different odour in acid and bases.
- Vanilla, onion, clove

	S.	Indicator	Smell/Colour in	Smell/Colour in
	No.		acidic solution	basic solution
	- 1.	Litmus	Red	Blue
Natural	2.	Red cabbage leaf extract	Red	Green
Natural Indicator	3.	Flower of hydrangea plant	Blue	Pink
	_ 4.	Turmeric	No change	Red
Synthetic	T 1.	Phenolphthalein	Colourless	Pink
Indicator	L 2.	Methyl orange	Red	Yellow
Olfactory	T 1.	Onion	Characteristic smell	No smell
Indicator		Vanilla essence	Retains smell	No smell
	L 3.	Clove oil	Retains smell	Loses smell

CHEMICAL PROPERTIES OF ACIDS AND BASES

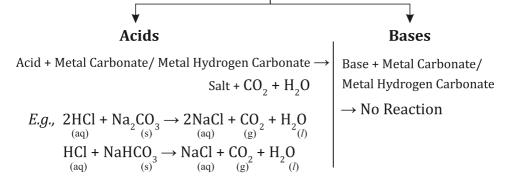
Reaction of Metals with

Acids

Bases

Acid + Metal \rightarrow Salt + Hydrogen gas

Base + Metal → Salt + Hydrogen gas


E.g., $2HCl + Zn \rightarrow ZnCl_2 + H_2\uparrow$

$$\textit{E.g.,} \; 2 \text{NaOH} + \text{Zn} \rightarrow \text{Na}_2 \text{ZnO}_2 + \text{H}_2 \uparrow$$

(Sodium zincate)

Hydrogen gas released can be tested by bringing burning candle near gas bubbles, it burns with pop sound.

Reaction of Metal Carbonates/Metal Hydrogen Carbonates with

* CO₂ can be tested by passing it through lime water.

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$
 (Lime water turns milky.)
insoluble

When excess *CO₂ is passed,

$$CaCO_3 + CO_2 + H_2O \rightarrow Ca(HCO_3)_2$$
 (Milkiness disappears.) (Soluble)

Reaction of Acids and Bases With Each Other Acid + Base → Salt + H₂O

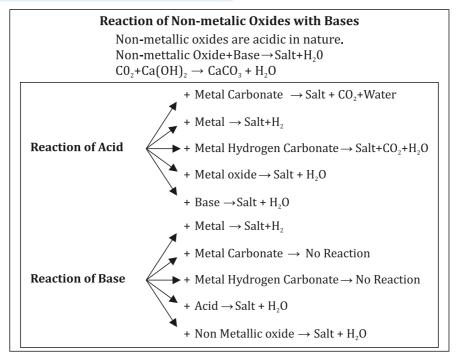
Neutralisation Reaction: Reaction of acid with base to give salt and water is called as **neutralisation** reaction.

E.g.,
$$HCl + NaOH \rightarrow NaCl + H_2O$$

IF:

Strong Acid + Weak Base \rightarrow Acidic salt + H_2O [pH of the Solution is less than 7]

Weak Acid + Strong Base \rightarrow Basic salt + H_2O [pH of the Solution is more than 7]


Strong Acid + Strong Base \rightarrow Neutral salt + H_2O [pH of the Solution is = 7] Weak Acid + Weak Base \rightarrow Neutral salt + H_2O^2 [pH of the Solution is = 7]

Reaction of Metallic Oxides with Acids

Metallic oxides + Acid \longrightarrow Salt + Water

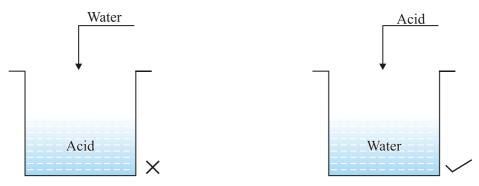
Metallic oxides are basic in nature. because it reacts with acid and forms salt and water

E.g., CaO, MgO are basic oxides. Metallic Oxide + Acid \rightarrow Salt + H₂O CaO + 2HCl \rightarrow CaCl₂ + H₂O

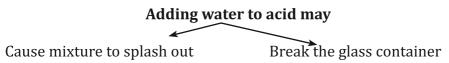
What do all Acids and Bases have in common

- All acids have H⁺ ions in common.
- Acids produce H⁺ ions in solution which are responsible for their acidic properties.
- All bases have OH⁻ (hydroxyl ions) in common.

Acid or Base in Water Solution


- Acids produce H⁺ ions in presence of water.
- H^+ ions cannot exist alone, they exist as H_3O^+ (hydronium ions).

$$\begin{aligned} & H^+ + H_2O & \rightarrow & H_3O^+ \\ & HCl + H_2O & \rightarrow & H_3O^+ + Cl^- \end{aligned}$$


Bases when dissolved in water gives OH⁻ ions.

NaOH
$$\xrightarrow{\text{H}_2\text{O}}$$
 Na⁺ + OH⁻
Mg(OH)₂ $\xrightarrow{\text{H}_2\text{O}}$ Mg²⁺ + 2OH⁻

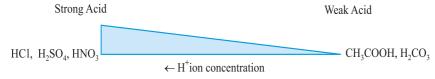
- Bases soluble in water are called alkali.
- While diluting acids, it is recommended that the acid should be added to water and not water to acid because the process of dissolving an acid or a base in water is highly exothermic.

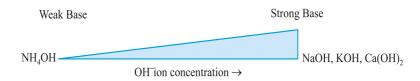
If water is added to acid, the heat generated may cause the mixture to splash out and cause burns and the glass container may also break due to excessive local heating.

Mixing an acid or a base with $\rm H_2O$ results in decrease of concentration of ions ($\rm H_3O^+/OH^-$) per unit volume. Such a process is called as dilution.

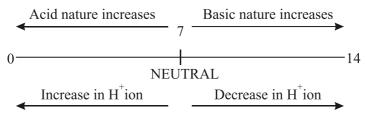
Strength of Acid and Base

Strength of acid or base can be estimated using universal indicator.


Universal indicator : is a mixture of several indicators. It shows different colours at different concentrations of H⁺ ions in the solution.


pH Scale : A scale for measuring H⁺ ion concentration in a solution . p in pH stands for 'potenz' a German word which means power.

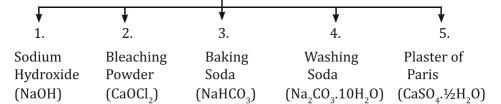
stands for 'potenz' a German word which means power. $pH = 7 \rightarrow neutral solution$


pH less than $7 \rightarrow \text{acidic solution}$

pH more than $7 \rightarrow \text{basic solution}$

On diluting an acid: pH increases ↑
On diluting a base: pH decreases ↓

Importance of pH in everyday life


1. Plants and animals are pH sensitive
• When pH of rain water is less than 5.6, it is called acid rain.
2. pH of the soil
• Plants require a specific pH range for their healthy growth. If the pH of soil of any place is less or more, then farmers have to mix some acidic or basic substances as required.

- 3. pH in our digestive system
- Our stomach produces HCl acid which helps in digestion.
- During indigestion, stomach produces more acid and cause pain and irritation.
- To get rid of this pain, people uses antacid (mild base) like milk of magnesia [Mg(OH)₂] to neutralize excess acid.
- 4. pH change as cause of tooth decay
- Tooth decay starts when pH of mouth is lower than 5.5.
- Tooth enamel made up of calcium phosphate (hardest substance in body) does not dissolve in water but corrodes when pH is lower than
 5.5 due to acids produced by degradation of food particles by bacteria.
- Using toothpaste (generally basic) tooth decay can be prevented.
- 5. Self defence by animals and plants through chemical warfare
- (a) Bee sting leaves an acid which cause pain and irritation. Use of a mild base like baking soda on stung area gives relief.
- (b) Stinging hair of nettle leaves inject methanoic acid causing burning sensation or pain.Rubbing with leaf of dock plant give relief.

pH of Salts:

- (i) Strong Acid + Strong Base \rightarrow Neutral Salt : pH = 7 eg. NaCl
- (ii) Salt of strong acid + Weak base \rightarrow Acidic salt : pH < 7 eg. NH₄Cl
- (iii) Salt of strong base + Weak acid \rightarrow Basic salt : pH > 7 eg. CH₃COONa

Chemicals from Common Salt (NaCl)

1. Sodium Hydroxide (NaOH) : When electricity is passed through an aqueous solution of NaCl (brine), it decomposes to form NaOH. (Chlor-alkali process)

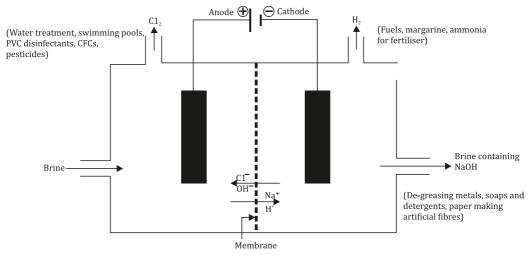


Figure 2.8 Important products from the chlor-alkali process

$$\mathbf{2NaCl} + \mathbf{2H_{2}O} \rightarrow \mathbf{2NaOH} + \mathbf{Cl_{2}} + \mathbf{H_{2}}$$

At anode: Cl₂ gas

At cathode: H2 gas

Near cathode: NaOH solution is formed.

Uses:

H₂: Fuels, margarine

Cl₂: Water treatment, PVC, CFC's

HCl: Cleaning steels, medicines

NaOH: Degreasing metals, soaps and paper making

Cl₂ + NaOH → Bleach : Household bleaches, bleaching fabrics

2. Bleaching Powder (CaOCl₂): It is produced by the action of chlorine on dry slaked lime.

$$Cl_2 + Ca(OH)_2 \rightarrow CaOCl_2 + H_2O$$

Uses:

- (a) Bleaching cotton and linen in textile industry.
- (b) Bleaching wood pulp in paper factories.
- (c) Oxidizing agent in chemical industries.
- (d) Disinfecting drinking water.
- 3. Baking Soda (Sodium Hydrogen Carbonate) (NaHCO₃):

$$NaCl + H_2O + CO_2 + NH_3 \rightarrow NH_4Cl + NaHCO_3$$
Baking soda

- It is mild non-corrosive base.
- When it is heated during cooking:

$$2NaHCO_3 \xrightarrow{\Delta} Na_2CO_3 + H_2O + CO_2$$

Uses:

- (a) For making baking powder (mixture of baking soda and tartaric acid). When baking powder is heated or mixed with water, CO₂ is produced which causes bread and cake to rise making them soft and spongy.
- (b) An ingredient in antacid.
- (c) Used in soda-acids, fire extinguishers.
- **4. Washing Soda (Na₂CO₃.10H₂O) :** Recrystallization of sodium carbonate gives washing soda. It is a basic salt.

$$Na_{2}CO_{3} + 10H_{2}O \rightarrow Na_{2}CO_{3}.10H_{2}O$$

Uses:

- (a) In glass, soap and paper industry.
- (b) Manufacture of borax.
- (c) Cleaning agent for domestic purposes.
- (d) For removing permanent hardness of water.

5. Plaster of Paris (Calcium sulphate hemihydrates) (CaSO₄.½H₂O):

On heating gypsum ($CaSO_4.2H_2O$) at 373K, it loses water molecules and becomes Plaster of Paris (POP).

It is a white powder and on mixing with water it changes to gypsum.

$$CaSO_4.\frac{1}{2}H_2O + \frac{1}{2}H_2O \rightarrow CaSO_4.2H_2O$$

Uses:

- (a) Doctors use POP for supporting fractured bones.
- (b) For making toys, material for decoration.
- (c) For making surfaces smooth.

Water of Crystallization: It is a fixed number of water molecules present in one formula unit of a salt.

E.g., CuSO₄.5H₂O has 5 water molecules.

Na₂CO₃.10H₂O has 10 water molecules.

CaSO₄.2H₂O has 2 water molecules.

VERY SHORT ANSWER TYPE OF QUESTION (1 MARK)

- Q. 1 To protect tooth decay we are advised to brush our teeth regularly. The nature of tooth paste used is
 - a) acidic b) neutral c) basic d) corrosive
- Q.2 A compound x in aqueous solution turns red litmus solution into blue Identify 'x'
 - a) Hydrochloric acid b) Ammonium hydroxide solution.
 - c) Sodium chloride solution d) Vinegar
- Q.3 Which one is stronger acid, with pH=5 or with pH=2?
- Q.4 What happens when chlorine is passed over dry slaked lime.

(CBSE-2010, 2011)

- Q.5 Dry HCl gas does not change the colour of dry blue litmus paper. Why?
- Q.6 Fill in the blanks-
- a) The chemical formula of plaster of paris is ______.
- b) Neutral substances have a pH=_____.
- c) Gold can be dissolved in______.
- d) Commonoly used antacid is ______.