Structured Query Language:

Introduction:

SQL is shortened for Structured Query Language. And it is pronounced as ‘Sequel’. SQL is used to
manage databases. SQL was developed in 1970 in IBM Laboratory and it became a standard of the
ANSI (American National Standard Institute) in 1986.

SQL is a query language, not a database system. You are required to install DBMS software in your
system to perform SQL Language operations with help to query Example — Oracle,
MySQL, MongoDB, PostgreSQL, SQL Server, DB2 etc.

SQL is mainly used for maintaining the data in relational database management systems. SQL
provides interaction between the user and the database via a set of standard commands.

In simple words, SQL is a language that helps users to communicate with databases. SQL is not a
case-sensitive language means you can type your query in small or capital letters.

How SOL PROVIDE INTERACTION BETWEEN USER AND

You may write comments in SQL using “--” (Double hyphen)

Users may get information from a database file from the required query. A query is a request in the
form of an SQL command to retrieve information with some condition. You will see lots of queries
performing different types of operations. SQL is a query language (Query-based language) which
works on structured data (data in structured form).

Now let’s discuss all the SQL Commands in a categorized way.

SQL (STRUCTURED QUERY LANGUAGE) COMMANDS

DIAGRAM: 8

SOL COMMANDS CAN BE CLASSIFIED INTO FOLLOWING
CATEGORY

SQL perform the following operation:

* Create a database

= Create a table

* Create view

* Insert data

* Update data

* Delete data

= Execute Query

* Set Permission or Constraints in the table

SQL Commands:

SQL commands are a predefined set of commands which are already defined in SQL. Commands are
combinations of keywords and statements you want to execute. Keywords are reserved words that
have special meaning for SQL, you don’t need to define them as they are already defined in SQL. All
you need to use these keywords with your particular statements.

CLAUSE IN SQL:

Clause: Clause are built-in functions which are used to deal with data inside the table that help SQL
to filter and analyse data quickly.

Used to select or filter rows based on particular valid condition.
It is mainly used with SELECT, UPDATE AND DELETE

Used to mention name of table or source table from where you
want to fetch/retrieve data. It is mainly used with SELECT

Used to sort the result set in ascending order (by default). You

BY can use DESC keyword to sort in descending order

CLAUSE

GROUP
BY
CLAUSE

Used to group rows from a table based on one or more
columns. It’s mainly used with aggregate functions.

Used with GROUP BY clause to filter the result of a query 'y
based on aggregate function applied to grouped columns

Used with WHERE clause to search for a specific patternin a
column. It uses wildcard (%,_) characters to match the strings

Any SQL statement is composed of two or more clauses.

These clauses are used with your SQL statements to filter commands you may learn in detail in
further sections. Some mainly used clauses are discussed below.

NOTE: All SQL statements are terminated with (;) semicolon
SQL statements are not case sensitive, which means SQL treats both upper and lowercase
commands as the same.

179

SQL (Structured Query Language)
Constraints:

Constraints in SQL are sets of rules that are applied to the data in a relation/table. Constraints are
used to ensure the accuracy and reliability of the data. Constraints can be at column level or table
level. Column-level constraints apply to a column, and table-level constraints apply to the whole
table. After applying constraints to the table, if any violation happens, then the data can’t be
inserted or the action can’t be completed.

Types of constraints:

1. Unique: This constraint ensures that all values present or inserted in a column are different.

2. Not Null: This constraint ensures that no null values are present or inserted in a column.

3. Primary key: The primary key applies both unique and not null constraints to the column. It
uniquely identifies a unique tuple/row in a relation/table.

4. Foreign Key: unique, not null and primary key constraint applies to a single table whereas the
foreign key constraint applies to two tables.

For example: we have two tables’ - student and awards, as follows:

Table: Student Table: Awards
ID Name Age City ID Award Sport
1 Amit 15 Delhi 1 Gold Badminton
2 Madhu | 14 Gurugram 2 Silver Tennis
3 Manoj 15 Noida 1 Silver Hockey
4 Asif 15 Faridabad 4 Bronze Badminton

Here we will establish foreign key constraints on the column ID of the Student table and the
column ID of the Awards table. Here we will consider the Student table as the parent table and
the Awards table as the child table. The following rules must be followed:

(a) Column ID of the Student table must be its primary key.
(b) Column ID of the Awards table may or may not be the primary key of the Awards table.

Let’s assume that our parent table Student has already been created. Now we will create child
table awards and apply foreign key constraints on it. (Note: Foreign key relation can only be
applied on child table)

SQL Query

create table <child table name> (<column name 1> <data type>, <column name 2> <data
type>,..., foreign key(<column name>) references <parent table name>(<column name>));

mysql> create table awards(ID int, Award char(50),Sport char(50),foreign key(ID) references student(ID));

Query OK, @ rows affected (0.06 sec)

> Foreign key constraint ensures that only that data can be inserted in column ID of the
Awards table which is present in column ID of the Student table.

select * from student;

Gurugram
Noida
Faridabad

4 rows in set (0.00 sec)

mysql> insert into awards values(l, 'Gold', 'Badminton');
Query OK, 1 row affected (0.01 sec)

Here, As ID ‘1’ is already present in the parent table ‘student’, So, ID ‘1’ can be inserted in the
child table ‘awards’.

Now, we will try to insert ID ‘6’ in the child table ‘awards’ which is not present in the parent
table ‘student’.

mysql> insert into awards values(6,'Gold', 'Football');
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (demo'.‘awards‘, CONSTRAINT ‘awards_ibfk_1' FOR
EIGN KEY (“ID') REFERENCES ‘student' (‘ID*))

Here we can see that when we tried to insert value 6 in column ID of child table awards, it
showed an error. This is how a foreign key works.

A few basic SQL Queries:

Create database: To create a new database,)
- X mysql> create database test;
the create database command is used. Query 0K, 1 row affected (0.00 sec)

Query: create database <database name>;

Show databases: To view the list of
available/created databases in SQL, the show
databases command is used.

Query: show databases;

mysgl> show databases:
+

Use database: To select a database among
available databases, use command is used.

Query: use <database name>;

Show tables: To view the list of
available/created databases in SQL, the show
tables command is used.

Query: show tables;

mysql> show tables;

employee
equi
equil
hello
hellol
student

18 rows in set (B.16 sec)

Create table: To create a new table in the selected database. For example, if | want to create a table
Student with the following attributes and data types:

Name of attribute Data Type SQL Query

Student_ID Int create table <table name>(<attribute name> <data
Student_Name char(30) type> (size), <attribute name> <data type> (size) ...);
Age Int

Phone Int

Address varchar(50)

mysql> create table student (Student _ID Student _Name char(30),Age Phone int,Address varchar(5@));
Query OK, @ rows affected (@.16 sec)

Describe table: To view the
structure of the table (like
attributes and its data types, Student_ID

. Student_Name
keys, constraints, and default Age

one
values), the desc command is Address
used.

+————— —
+————— —
+————— —

Query: desc <table name>;

{1 Nl ool EL - CRICIMUREIRN . o 1> (occrt into student values(l,’Amit’,17,98769876, delhi’);
data in a table, an insert Query OK, 1 row affected (0.08 sec)
’
f mysql> insert into student values(2,’Sonam’,16,88769876, gurugram’);
command is used (One row at Query OK, 1 row affected (@.06 sec)
a tlme)' Here in this example' mysql> insert into student values(3,’Mahesh’,17,68769876,’ jaipur’);
data of 4 students are Query OK, 1 row affected (0.08 sec)

R i mysql) insert into student values(4,’Priya’,18,78769876, noida’);
inserted in the table student. Query 0K, 1 row affected (.11 sec)

Query: insert into <table
name> values (<valuel>,
<value2>, <value3> ...);

Select command: To show the
data of a table, select
command is used. Let’s show
the data of 4 students in the
student table that was

—————
+———— i — e

4 rows in set (@.06 sec)

inserted in the previous
command.

Query: select * from <table
name>;

Here * means all columns
Drop table command: To | pewesyp ey marpypons
delete data as well as the | H
structure of a table, drop
command is used.

Query: drop table <table

name> employee
equi
equil
hello
hellol
student

mysql> drop table abc;
Query OK, @ rows affected (0.20 sec)

Drop database command: To
delete a database along with
all the tables present in the
database, drop command is
used.

mysql> use home;
Database changed
mysql> show tables;

Query: drop database

<database name> +
1 row in set (0.00 sec)

mysql> drop database home;
Query OK, 1 row affected (0.03 sec)

DDL (Data Definition Language) Commands:
These commands are used to make any changes in the structure of the table/database. These
commands don’t change the data of the table.

Example: create table, alter table, drop table, create database, create view etc.

We have already covered a few DDL Commands like create database, create table, drop database,
and drop table. A few more DDL commands like alter table will be discussed now.

Alter Table: This is a DDL command and it is used to modify a table. This command can be used to
add, delete, or modify columns, add or drop constraints etc.

Query: alter table <table name> [alter option]

(a) Add a column to the table: We have a table student which was created in the previous section.

fmmm

| Student_ID
+

+ +
| |
+ +
| |
| |
| |
| |
+ +

Query: alter table <table name> add <column name><data type> [constraint];
Example: Let’s add a column ‘class’ with data type varchar and size 50 and nulls are not allowed.

mysql> alter table student add class varchar(S8) not null;
Query 0K, 4 rows affected (B.33 sec)
Records: 4 Duplicates: @ HWarnings:

mysql> select * from student;
+

|
+
gurugram

jaipur
noida

+————
+————
+——— —
+————+—+

4 rows in set (B.00 sec)

(b) Drop a column from the table: Let’s delete the column ‘class’ from the table ‘student’ which we
added in the previous section.
Command: alter table <table name> drop column<column name>;

mysql> alter table student drog column class;
Query OK, 4 rows affected (@.27 sec)
Records: 4 Duplicates: @ Warnings:

mysql> select * from student;
+

+ +
| |
+ +
| |
| |
| |
| |
+ +

(c) Modifying column of a table: We have different ways to modify a table like column name, data
type, default value, size, order of columns, and constraints.

(i) Changing column name: We can change the column name of a table using the alter
command.
Example: In table student, Let’s change column name Student_ID to ID.
Query: alter table <table name> change column <old column name> <new column name>
<data type>

mysqld> alter table student change column Student_ID ID int;

uery 0K, @ rows affected (0.14 sec
Records: @ Duplicates: @ HWarnings:
mysql)> select ¥ from student;

———————————————————— B etk e et P
| ID I Student_Name | Age | Phone | Address |
m————— Fmmm m————— Fmmm e ——— Fmmm——————— +
| 1 | Amit | 17 | 98769876 | delhi |
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | Mahesh | 17 | 68769876 | jaipur I
| 4 | Priva | 18 | 78769876 | noida
m————— B m————— Fmmm——————— Fmmm——————— +
4 rows in set (0.00 sec)

(ii) Changing column data type: We can change the column data type from varchar to char or
int to varchar etc. of a table using the alter command.
Example: in table student, Let’s change the datatype of column ‘ID’ from int to varchar.

Query: alter table <table name> modify column <column name> <new data type> <size>

mysql> desc student;

+ + + +
| Field | Type I Null | Key | Default | Extra |
+ - ————————— fm———— fomm——————— fmm————— +
IlID I 1nt(11) | I YES | | NULL | |
| udent _Name I YES | | NULL | | |
| Aﬁe | 1nt(11) I YES | | NULL | |
| Phone | int(11) I YES | | NULL | |
| Address I varchar(S@) I YES | | NULL | |
fmm—m e ——————————— Fmm————— Fm———— fomm——————— fmm————— +

S rows in set (@ 00 sec)

mysql)> alter table student modify column ID varchar(50);
uery OK, 4 rows affected (0.48 sec

Records: 4 Duplicates: @ Warnings: O

mysql) desc student,

——————————————————————————— it il ettt Sttt 4
| Field I Type I Null | Key | Default | Extra |
ettty = = = Fm———— Fmmm—————— Fmm————— +
I LID | varchar(5@) || YES | | NULL | |
Student_Name [char	YES		NULL		
Aﬁe	int(11) I YES		NULL		
Phone	int(11) I YES		NULL		
Address	varchar(5@)	YES		NULL	
fmm Fmmm Fm———— Fm———— Fmm——————— Fmm—————— +
S rows in set (0.01 sec)

(iii) Changing the maximum size of the data in a column: We can change the maximum size of
the data in a column of a table using the alter command.

Example: In table student, Let's change the size of column ID from varchar(50) to
varchar(40)

Query: alter table <table name> modify column <column name> <data type with size>

mysql) desc 5tudent,

--------------------------- B it et A T e
| Field I Type | Null | Key | Default | Extra |
gy O — F———— Fmmm—————— Fmm————— +
LID I varchar(5S0)		YES		NULL	
uden ame ar	YES		NULL		
Aﬁe int(11)	YES		NULL		
Phone	int(11)	YES		NULL	
Address I varchar(5@)	YES		NULL		
it bt Sl m————— ———— Fmm——————— e e +

S rows in set (0 Q1 sec)

mysql)> alter table student modify column ID varchar(4Q);
uery OK, 4 rows affected (0.31 sec

Records: 4 Duplicates: @ Warnings: @

mysql) desc student,

——————————————————————————— Fmmmm e - ¢
I Field I Type | Null | Key | Default | Extra |
[T TRy g e e e Fm————— Fm———— e ————— Fm—————— +
[ID	_varchar(4@)		YES		NULL	
btudent _Name	char	YES		NULL		
ﬁ	int(11)	YES		NULL		
Phone	int(11)	YES		NULL		
Address	varchar(5@)	YES		NULL		
fmm Fmm Fm————— Fm———— e ————— Fm—————— +
S rows in set (0.00 sec)

(iv) Changing the order of the column: We can change the order of the column of a table using
the alter command. For example, in table student, we are going to place column ID after
column Age.

Query: alter table <table name> modify <column name> <data type with size> [first|after
<column name>]

mysql)> select ¥ from student;

+ +
Il ID I Student_Name | Age | Phone | Address |
ks ik P I P P +-—T——— Fm—m—————— Fmmmmm——— e +
|1 | Amit | 17 | 98769876 | delhi |
Il 2 | Sonam | 16 | 88769876 | gurugram |
I3 | Mahesh I 17 | 68769876 | jaipur I
L4 | Priya I 18 | 78769876 | noida I
= btk T PR Fmmm——————— Fmm e ———— +

4 rows in set (0.00 sec)

mysql)> alter table student modify ID varchar(4@) after Age;
Query OK, 4 rows affected (0.23 sec)
Records: 4 Duplicates: @ MWarnings:

mysql) select % from student,

+ + +

I Student_Name | Age I ID | Phone | Address |
o Fm————— -t o +
Amit	17 111	98769876	delhi	
Sonam	16 1	2	88769876	gurugram
Mahesh	17 113	68769876	jaipur	
Priva I 18 1	4	78769876	noida	
e === o ————— Fmmm e ——— +
4 rows in set (@ 00 sec)

Now we are going to put column ID back to the first position.

mysql) select % from student;

—————————————— Bt e it ittt
| Student_Name | Age | |ID | Phone | Address |
e dm———— B e T Fmmm - +
Amit I 17 11	98769876	delhi		
Sonam I 16		2	88769876	gurugram
Mahesh I 17 113	68769876	jaipur		
Priya I 18 I 4	78769876	noida I		
Fmmm e —T T - - Fmmm e ———— Fmmm - +

4 rows in set (0 (%]%] sec)

mysql)> alter table student modify ID varchar(4@) first;
uery OK, 4 rows affected (8.27 sec)
Records: 4 Duplicates: @ Warnings:

mysql)> select % from student;

+ +

Il ID | Student_Name | Age | Phone | Address |
LY it it ettt Fm————— Fmm e ———— +
111 | Amit | 17 | 98769876 | delhi |
1|12 | Sonam | 16 | 88769876 | gurugram |
113 | Mahesh | 17 | 68769876 | jaipur |
114 I riva | 18 | 78769876 | noida |
R itttk Fm————— e —————— e ————— +
4 rows 1n set (0.00 sec)

(v) Add/drop constraints/column: We can add/drop constraints in a table using the alter
command.

» Adding primary key: Let’s add the primary key at column ‘ID’ using the alter command.

Query: alter table <table name> add primary key(<column name>);

mysql)> alter table student add primary key(ID);
Query OK, 4 rows affected (83.51 sec
Records: 4 Duplicates: @ Warnings: @

mysql) desc student,

——————— +

+ + + +

| Field I Type | Null | Key | Default | Extra |
T T S -5 [T

varchar

Student_Name	char(39)	YES		NULL	
Aﬁe	int(11)	YES		NULL	
Phone	int(11)	YES		NULL	
Address	varchar(5@)	YES		NULL	
e Fmm———— m———— o ————— Fmmm———— +

S rows in set (8.16 sec)

> Dropping primary key: Let’s remove the primary key at column ID which was added in
the previous section.

Query: alter table <table name> drop primary key;
mysql)> alter table student droE prlmary key;

Query OK, 4 rows affected sec)
Records: 4 Duplicates: @ Warnings: @
mysql) desc student;

—————————————— B e e e T e
| Field | Type | Null | Key | Default | Extra |
bmm e ————— mm e —————— m————— m———— e ——— e ————— +
ID	varchar(4@)	NO			
Student _Name	char(30)	YES		NULL	
ﬁ	int(11)	YES		NULL	
Phone	int(11)	YES		NULL	
Address	varchar(5@)	YES		NULL	
e ——————— mm——————————— m————— m———— Fmm e ———— Fmm————— +
S rows in set (0.00 sec)

» Adding a new column: Let’s add a column ‘country’ with data type char of size 50 to
the table ‘student’ using the alter command.

Query: alter table <table name> add column <column name> <data type with size>;

mysql)> alter table student add column country char(5@);

Query OK, 4 rows affected (0.27 sec
Records: 4 Duplicates: @ MWarnings:
mysql) desc student,

--------------------------- B T S St 3
I Field I Type | Null | Key | Default | Extra |
D ittt B et e Fm————— dm———— Fmm——————— D +
ID	varchar(40)	NO			
Student_Name	char(30)	YES		NULL	
Aﬁe	int(11)	YES		NULL	
Phone	int(11)	YES		NULL	
Address	varchar(5@)	YES		NULL	
country	char(50 I YES		NULL		
fmm mm e ——— m————— Fm———— Fmm——————— mm————— +
6 rows in set (0.01 sec)

> Dropping a column: Let’s remove a column ‘country’ which was added in the last
section using the alter command.

Command: alter table <table name> drop column <column name>;

mysql> alter table student drop column country;
uery OK, 4 rows affected (0.31 sec
Records: 4 Duplicates: @ Warnings: 0

mysql) desc student,

+ + + +

I Field | Type | Null | Key | Default | Extra |
e B T et Fm————— Fm———— Fmmm—————— Fmm————— +
ID	varchar(40)				
Student_Name	char(3@)	YES		NULL	
Aﬁ	int(11)	YES		NULL	
Phone	int(11)	YES		NULL	
Address	varchar(S@)	YES		NULL	
e — e e fm————— $m————— S Fmmm———— +
S rows in set (0.91 sec)

DML (Data Definition Language) Commands:
These commands are used to make any changes in the data of the table.
DML commands: insert, delete, update, select etc.

We have already covered a few DML Commands like insert and select. Now we will discuss delete
and update commands.

1. Delete command: The delete command is used to delete data from the table. Where clause is
used to give condition in a SQL query. All those tuples which satisfy the condition will be deleted
from the table.

Command: delete from <table name> where <condition>;

Now, let’s delete the data of all those students from the student table whose ID is greater than
5.

!mysql) select ¥ from student;
e e m e — e —— e ————————— +

- + -
| ID | Student_Name | Age | Phone | Address |
Fmm e m e +————— mm——————— tmm———————

Il 1 | Amit | 17 | 98769876 | delhi |
2	Sonam	16	88769876	gurugram
2	Mahesh	17	68769876	jaipur
l 4	Priva	18	78769876	noida
I S	Monika	17	98769876	delhi
6	Raju	18	98769877	noida
7	Kirti	19	98769875	delhi
T T T T Fmmmm e ——— e ——— +
i? rows in set (0.00 sec)

mysql? delete from student where ID>5;

Query 0K, Z2 rows affected (@.13 sec)

mysql> select ¥ from student;

[Fm———pm—m - ———— o m Fmmm o +
| ID | Student_Name | Age | Phone | Address |
S T dm———— e —— Fmm +
I 1 | Amit | 17 | 98769876 | delhi |
2	Sonam	16	88769876	gurugram
3	Mahesh	17	68769876	jaipur
l 4	Priya	18	78769876	noida
!I 5 | Monika | 17 | 98769876 | delhi |
e T it Skttt ol Ao Ao iy e +
;5 rows in set (0.00 sec)

2. Update command: The update command is used to update data from the table. Where clause
is used to give condition in a SQL query. All those tuples which satisfy the condition will be
updated in the table.

Command: update <table name> set <column name>=<new data> where <condition>;
Now, let’s update the Address from ‘Delhi’ to ‘Sonipat’ of that student whose name is ‘Amit’.

mysql> select % from student,
e e e +

+ +
‘I ID | Student_Name | Age I Phone | Address |
B e fomm——— fommmmmm—— fommmmm

(11 | Amit | 17 | 98769876 | delhi |
2	Sonam	16	88769876	gurugram
3	Mahesh	17	68769876	jaipur
4	Priya	18	78769876	noida
I S | Monika I 17 | 98769876 | delhi |
i e ittt et o ——————— e ——————— +
S rows in set (0.00 sec)

mysql> update student set Address=’Sonipat’ where Student_Name=’Amit’;
Query OK, 1 row affected (0.09 sec
Rows matched: 1 Changed: 1 MWarnings: @

mysql)> select % from student;

—————————————————— o o o e e
| ID | Student_Name | Age | Phone | Address |
B o e fommm—= F i S e e 1 SRt o e
I 1 | Amit | 17 | 98769876 | Sonipat |
2	Sonam	16	88769876	gurugram
3	Mahesh	17	68769876	jaipur
4	Priya	18	78769876	noida
I S | Monika I 17 | 98769876 | delhi |
o e e o ——————— fmm———————— +
S rows in set (0.00 sec)

Aliasing:

Aliasing in SQL is the process of assigning a nick name or a temporary name to a table or column.
We create aliases to make queries more readable and easier to use. The alias can be created using
the ‘as’ keyword. Creating aliases doesn’t change the name of any table or column permanently.

mysql> select ¥ from student;

R e T T +————— e ———— Fmm e ——— +
| ID | Student_Name | Age | Phone | Address |
e e e ——— Fmmmm L +
I 1 | Amit | 17 | 98769876 | Sonipat |
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | Mahesh | 17 | 68769876 | jaipur |
|l 4 | Priva | 18 | 78769876 | noida I
I 5 | Monika I 17 | 98769876 | delhi I
T T T, T mm— dmm +

S rows in set (@.,00 sec)

mysql> select ID, Student_Name as Name from student;
+

=
o
g i
m
u
=

+
S rows in set (0.06 sec)

Distinct clause:

The distinct clause is used to display unique values by neglecting all the duplicate values. Distinct
clause can be used for more than one column.

mysql> select * from student

R e N T PR T T +
| ID | Student_Name | Age | Phone | Address |
il itttk F————— Fm—m e ——— Fm—m———————— +
I 1 | Amit | 17 | 98769876 | Sonipat |
| 2 | Sonam | 1& | 88769876 | gurugram |
| 3 | Mahesh I 17 | 68769876 | jaipur I
| 4 | Priva I 18 | 78769876 | noida I
| 5 | Monika I 17 | 98769876 | delhi I
Il 1 | Ajay I 17 | 98769857 | jaipur I
| 3 | sonal I 18 | 94769857 | noida I
et dt et T - ——— - ———— +

7 rows in set (0.00 sec)

Here in the ‘student’ table, two duplicate IDs 1 and 3 are present. Now using distinct clauses we can
get unique values.

mysql> select distinct(ID) from student;

+-———+

5 rows in set (B.9080 sec)

As we can see all duplicate IDs are removed but it is temporary. Duplicate values are not removed
and are still present in the table.

Where clause: The WHERE clause in SQL is used to filter the results of a SELECT statement by
specifying one or more conditions. All those tuples which meet the condition will be included in the
final result.

The WHERE clause is a very powerful technique to select particular rows from a table. It can be used
to filter by the values in a column, by the values in multiple columns, or by the outcome of any
calculation.

Uses of where clause:

e Where clause can be used with the select statement to filter the result.

e Where clause can be used with an update statement to update the data of the table that
matches with the condition.

e Where clause can be used with a delete statement to delete the rows of the table that match
with the condition.

Query: where <condition>;
Examples:

1. To filter the result based on only one condition:

mysql> select % from student;

e - m————— Fmm——————— e —— +
| ID | Student_Name | Age | Phone | Address |
S S e s Do G g e e i R T T e +
I 1 | Amit | 17 | 98769876 | Sonipat |
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | Mahesh I 17 | 68769876 | jaipur I
| 4 | Priva | 18 | 78769876 | noida I
| 5 | Monika | 17 | 98769876 | delhi |
| 1 | Ajay | 17 | 98769857 | jaipur I
| 3 | sonal | 18 | 94769857 | noida I
itk Attt etttk ettt tmm——————— e —— +
7 rows in set (Q.0@ sec)

mysql> select ¥ from student where age<=17;

e g R T g T T g e P e +
| ID | Student_Name | Age | Phone | Address |
e Fm———— Fmmm e ——— Fmmm e —— +
I 1 | Amit | 17 | 98769876 | Sonipat |
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | Mahesh | 17 | 68769876 | jai ur |
| 5 | Monika | 17 | 98769876 | del I
I 1 | Ajay | 17 | 98769857 | Jalpur |
itk Attt itttk ettt tmm——————— e ———— +
5 rows in set (B.85 sec)

2. To filter the result based on multiple conditions:

|mysql> select ¥ from student where age(17 and Address=’jaipur’;

1101 | “Student Name | Age | | “Phone | I “Address | |
T T e bt T T
| 3 | Mahesh | 17 | 68769876 | jaipur |
| AJay | 17 | 98769857 | jaipur

T T e e e +
2 rows in set (B.06 sec)

In clause and not in clause:
in clause and not in clause in SQL is used to filter the rows in output based on a list of values.

Query for in clause: where <column name> in (item1, item2,...);

Query for not in clause: where <column name> not in (item1, itemz2,...);

Example of in clause: if we want to find the data of those students who live in either ‘Delhi’ or
‘Jaipur’ or ‘Gurugram’. Now to solve this problem, we have two ways. Either we write multiple
comparisons using or keyword or we can use in clause. Now you will see that using in clause for
comparing with a list of items is an easy option.

mysql) select ¥ from student where Address- CIE.I.hJ. or Address=’jaipur’ or Address=’gurugram’;
__________________ b e B S M T DR)

I ID | Student_Name | Age | Phone I Address I

tm— b mmmmmm m———— Fmmmmmm——— e

| 2 | Sonam | 16 | 88769876 | gurugram |

| 3 | Mahesh | 17 | 68769876 | jaipur |

I 5 | Monika | 17 | 98769876 | delﬁi |

11 | Ajay I 17 | 98769857 | jaipur |

B T etk il Fmmmm e —— mm -

4 rows in set (0.00 sec)

mysql> select * from student where Address in (’delhi’,’ jaipur’, 'gurugram’);
__________________ e i e I e e e s L

| ID | Student_Name | Age | Phone | Address |

e m—m T ————— Fmmmm————— e ——— -

| 2 | Sopam | 16 | 88769876 | gurugram |

| 3 | Mahesh | 17 | 68769876 | jaipur |

I 5 | Monika | 17 | 98769876 | IEI |

11 | Ajay I 17 | 98769857 | jaipur |

B itttk i] Fmmmmm———— -

4 rows in set (0.85 sec)

Example of not in clause: if we want to find the data of those students who don’t live in ‘Delhi’ or
‘Jaipur’ or ‘Gurugram’.

mysql> select % from student where Address not 1n ('delhi”,’ jaipur’, ’gurugram’);
----- e e e e e

| ID | Student_Name | Age | Phone I Address I

o —— e m—mmmm m——_——— B it T

I 1 | Amit | 17 | 98769876 I Sonipat |

| 4 | Priva | 18 | 78769876 | noida |

I 3 | sonal I 18 | 94769857 I noida I

e il Tl e T +

3 rows in set (B.02 sec)

Between Clause: It is used to filter the rows in output based on the range of values.
Query: where <column name> between <starting value> and <ending value>;

Note: The final result of the between clause filters the rows of the table based on the range of
values including starting and ending values.

mysql> select # from student where age between 17 and 18;

e e o o ———— - o ————— +
| ID | Student_Name | Age | Phone | Address |
Fmmm e ————— e —————— Fm—m——————

I 1 | Amit | 17 | 98769876 | Sonipat |
I 3 | Mahesh | 17 | 68769876 | jaipur |
Il 4 | Priva | 18 | 78769876 | noida |
I 5 | Monika | 17 | 98769876 | delhi I
11 | Ajay | 17 | 98769857 | jaipur |
I 3 | sona I 18 | 94769857 | noida |
et e T T P e —————— Fmm—————— +

6 rows in set (@.85 sec)

Order by Clause: It is used to sort the output of the select statement in ascending or descending
order.

Query: order by <column name> [ASC| DESC];

Note: If not mentioned, by default it will sort the output in ascending order. So, if you want to sort
the data in ascending order, you need not mention the order of sorting as it is the default mode of
sorting.

hysql) select ¥ from student order by Student Name ASC;
+

+ +

| ID | Student_Name | Age | Phone I Address I
|l e s e s s e s e o ————— e ——— e ——— +
1 | Ajay | 17 | 98769857 | jaipur |
11 | Amit | 17 | 98769876 | éonipat |
| 3 | Mahesh | 17 | 68769876 | jaipur I
I 5 | Monika | 17 | 98769876 | delhi |
|l 4 | Priva | 18 | 78769876 | noida |
| 3 | sonal | 18 | 94769857 | noida |
I 2 | Sonam | 16 | 88769876 | gurugram |
R e ket ettt Fmmm——————— Fmmm——————— +

7 rows in set (.00 sec}

mysql> select ¥ from student order by Student Name,

+ + +
I ID | Student_Name | Age | Phone | Address |
N - S 2. Fomm T S S X +
I 1 | Ajay | 17 | 98769857 | jaipur |
I 1 | Amit I 17 | 98769876 | Sonipat |
I 3 | Mahesh | 17 | 68769876 | jaiﬁur |
I 5 | Monika | 17 | 98769876 | delhi |
Il 4 | Priva | 18 | 78769876 | noida |
| 3 | sonal | 18 | 94769857 | noida |
| 2 | Sonam | 16 | 88769876 | gurugram |
N g O . - Fomim i s < S +

7 rows in set (O.00 sec}

mysql> select % from student order by Student Name DESC;

+ + + +

| ID | Student_Name | Age | Phone | Address I
| o ———— o o +
| 2 | Sonam | 16 | 88769876 | gurugram |
I 3 | sona | 18 | 94769857 | noida |
Il 4 | Priva | 18 | 78769876 | noida |
I S | Monika | 17 | 98769876 | delhi |
I 3 | Mahesh | 17 | 68769876 | jaipur |
I 1 | Amit | 17 | 98769876 | Sonipat |
I 1 | Ajay I 17 | 98769857 | jaipur |
R e i et Fmmm——————— Fmmm——————— +
[7 rows in set (B.00 sec)

We can sort multiple columns together in ASC and DESC order.

mysql> select ¥ from student order by Addr‘ess DESC, Student _MName ASC;

b m e m F—————— e

| ID | Student_Name | Age | Phone | Address |
Ay Fm————— e - +
1	Amit	17	98769876	Sonipat
4	Priva	18	78769876	noida
3	sonal	18	94769857	noida
1	Ajay	17	98769857	jaipur
3	Mahesh	17	68769876	jaipur
2	Sonam	16	88769876	gurugram
I S | Monika I 17 | 98769876 | delhi |
it T il e Fmmmm—————— Fmmmm—————— +
7 rows in set (8.06 sec)

NULL: In SQL, null is a special value which means the absence of a value or a field doesn’t have a
value. Null doesn’t mean zero. Null also doesn’t mean empty string. Null is a kind of placeholder of
that value which is not present or not known.

Example: If the phone number of a student is not known at present, we can store NULL instead of
zero or make it empty.

m¥ysql?> insert into student values(6,’Tanva’,1l6,NULL, 'delhi’);

Query OK, 1 row affected (8.89 sec)
mysql?> select % from student;

—————————————————— e e —— 4
| ID | Student_Name | Age | Phone | Address |
TR SD SUED ST G S 60 S 5D SO 5D S 6D I ED SI e S 5 ApEYSIEs S e qF SICS SIS S ED SaeD SR es 9P 5T S ES SIED SIED SIS TS
Il 1 | Amit | 17 | 98769876 | Sonipat |
2	Sonam	16	88769876	gurugram
1 3	Mahesh	17	68769876	jaipur
4	Priva	18	78769876	noida
S	Monika	17	98769876	delhi
I 1	Ajay	17	98769857	jaipur
3	sona	18	94769857	noida
6	Tanya I 16	NULL	delhi	
Ty R e ——— Fmmm e ——— +
8 rows in set (.00 sec)

Example: To find out the names of students whose phone numbers are NULL.

mysql> select ¥ from student where Phone is null;

Fmm e e F——— Fm————— Fm——————— +
| ID | Student_Name | Age | Phone | Address |
b= mmmmmmm——— ——— - $————— +—————— +-———————— +
| 6 | Tanya I 16 | NULL | delhi I
I ittt +—————— +m——————— +

51 row in set (@.@2 sec)

Note: is keyword is used to compare values of a column with NULL.

Example: To find out the names of students whose phone numbers are not NULL.

mysql> select % from student where Phone is not null;
B S tm————— e ————— e —————— +
| ID | Student_Name | Age | Phone | Address |
e — e —— - F—m———— —m————— +
1 Amit	17	28769876	Sconipat	
2	Sonam	16	88769876	gurugram
2	Mahesh	17	68769876	jaipur
l 4	Priva	18	78769876	noida
I 5 | Monika | 17 | 98769876 | delhi |
I 1 | Ajay | 17 | 98769857 | jaipur |
I 2 | sonal I 18 | 94769857 | noida [
et it At F—————— —m———— +
7 rows in set (@.00 sec)

Like operator: Like operator is used to match a pattern. The like operator is used with the where
clause. Like operator has 2 wildcards:

_ (underscore): It is used to match one character.
2. % (percentage sign): It is used to match zero or more characters.

Example 1: To match a string that starts with ‘s’, its pattern will be ‘s%’. As we don’t know how
many characters are there after ‘s’, so ‘%’ sign is used after’s’

mysql> select * from student where Student_Name like ’sx’;

e ——————— e b ———————— +
| ID | Student_Name | Age | Phone | Address |
e e - Fmm———— Fmm———— — +
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | sonal I 18 | 94769857 | noida |
D e e A o ————————— e ————————— +
Z rows in set (0.0@ sec)

Example 2: To match a string that ends with ‘@’, its pattern will be ‘%a’. As we don’t know how many
characters are there before ‘a’, so ‘%’ sign is used before ’a’

mysql> select ¥ from student where Student_Name like ’xa’

L T - e +
| ID | Student_Name | Age | Phone | Address |
dmm e m - o ——— o — +
|l 4 | Priva | 18 | 78769876 | noida |
I S | Monika | 17 | 98769876 | delhi I
| 6 | Tanvya I 16 | NULL | delhi |
TSSO ST o S o e T S e S e qE e = s e SRR FEEEm === +
3 rows in set (0.00 sec)

Example 3: To match a string that contains ‘@’, its pattern will be ‘%a%’. As we don’t know how
many characters are there before or after ‘a’, so ‘%’ sign is used before and after ’a’

rnysql) select ¥ from student where Student_Name like ’'xax’;

------------------ Fmmm e
| ID I Student_Name | Age | Phone | Address |
Fmm e m———— e —— e —— +
I 1 | Amit | 17 | 98769876 | Sonipat |
2	Sonam	16	88769876	gurugram
3	Mahesh	17	68769876	jaipur
4	Privya	18	78769876	noida
I S	Monika	17	98769876	delhi
I 1	Ajay	17	98769857	jaipur
3	sonal	18	94769857	noida
6	Tanya I 16	NULL	delhi	
fmm e e ———— e +
8 rows in set (0.00 sec)

Example 4: To match a string that has a letter ‘a’ at the second position, its pattern will be ‘_a%’. As
we know there must be exactly one character before ‘a’ and we don’t know how many characters
are thereafter ‘a’, so the ‘_’ sign is used before ‘a’ and the ‘%’ sign is used after ’a’

mysql> select * from student where Student_Name like ’_ax’;
+

2 rows in set (0.00 sec)

Example 5: To match a string that has exactly 5 characters, its pattern willbe °_ _ ’. As we know
there must be exactly 5 characters, so the ‘_’ sign is used 5 times.

mysql)> select % from student where Address like '_____ :
+

- m————— e ——— e ———— +
| ID | Student_Name | Age | Phone | Address |
e m————— Fmm e ——— Fmmm—————— +
| 4 | Priya | 18 | 78769876 | noida |
I S | Monika | 17 | 98769876 | delhi |
| 3 | sonal | 18 | 94769857 | noida |
| 6 | Tanya I 16 | NULL | delhi |
B TP Pt TPNP R e e ——— +
4 rows in set (0.00 sec)

Example 6: To match a string that has exactly 7 characters and ends with ‘t’, its pattern will be *_ _

t’. As we know there must be exactly 7 characters, so the ‘_’ sign is used 6 times before ‘t’.

mysql> select ¥ from student where Address like '____ £t
Fmmm b ————————— e mmmm e ———————— +
| ID | Student_Name | Age | Phone | Address |
Fmmm b ——————— Fm————— e e e ——————— +
I 1 | Amit | 17 | 98769876 | Sonipat |
Fmm b —————— Fm————— Fmm e ————— e ——————— +

1 row in set (0.90 sec)

Update Command:
It is used to update the existing data in a table.
Command: update <table name> set <column name> = <new data> where <condition>;

Example 1: Let’s update the Age to 18 of that student whose name is Amit.

!mysql) select % from student;

T S el ——— O Fomm e ——

| ID | Student_Name | Age | Phone | Address |
F———— by b —————— e —— +
I 1 [|]Amit | 171 98769876 | Sonipat |
| 2 | Sonam I | 88769876 | gurugram |
I 3 | Mahesh | 17 | 68769876 | jaipur |
Il 4 | Priya I 18 | 78769876 | noida |
I 5 | Monika I 17 | 98769876 | delhi |
I 1 | Ajay I 17 | 98769857 | jaipur |
| 3 | sona | 18 | 94769857 | noida |
| &6 I Tanya I 16 | NULL | delhi |
Fmm e ————— Fmmm e ———— e ——————— +
8 rows in set (.00 sec)

mysql> update student set Age=18 where Student_Name='Amit’;

Query OK, 1 row affected (0.09 sec)
Rows matched: 1 Changed: Warnings: @
.mysql) select * from student
—————————————————————————————————— tm————————
I ID | Student_Name | Age I Phone | Address |
bmmm e = o ———————— o ————————
I 1 |[||[Amit 18 |1 98769876 | Sonipat |
2	Sonam 16	88769876	gurugram
3	Mahesh 17	68769876	jaipur
4	Priva 18	78769876	noida
I S	Monika 17	98769876	delhi
I 1	Ajay 17	98769857	jaipur
3	sonal 18	94769857	noida
6	Tanva 16	NULL	delhi
Fmm e —— —————— e ———— e ————— +
8 rows in set (0.01 sec)

Example 2: Let’s update the city to ‘Delhi’ of that student whose ID is 1 and Age is 17.

mysql> select % from student,

D ik ittt dat i ittt Fmmm——————— +
| ID | Student_Name I Age I Phone | Address |
e e s ke Fmmm—————— Fmm———————— +
| 1 Amit 18 98769876 Sonipat |
Il 2 Sonam 16 88769876 gurugram |
| 3 Mahes 17 68769876 jaipur |
I 4 Priya ;% 38769832 noida I
IIE jay 17 2/ jaipur |
| 3 sonal 18 oq 769607 noida |
| 6 Tanya 16 NULL delhi |
E R ittt da i etttk Fmm———————— +
8 rows in set (@.81 sec)
mysql)> update student set Address='delhi’ where ID=1 and Age=17;
uery row affected (@.11 sec)
Rows matched: 1 Changed: 1 Harnings: @
mysql)> select % from student,
| ID | Student_Name I Age | Phone | Address |
B it i Fmmm—————— Fmm———————— +
| 1 Amit 18 98769876 Sonipat |
Il 2 Sonam 16 88769876 gurugram |
| 3 Mahesh 17 68769876 jaipur |
| 4 Priva 18 78769876 noida |
| ? i 17 98769876 i |
| jay 1/ /7807 elhi |
| 3 sonal 18 769857 noida |
| 6 Tanya 16 NULL delhi |
B ettt ttatate Fmmm—————— Fmm———————— +

8 rows in set (Q.00 sec)

Delete Command: It is used to delete the existing rows in a table that matches the condition.

Query: delete from <table name> where <condition>;

Example 1: Let’s delete the data of those students whose ID is 1 but whose age is not 18.

mysql?> select ¥ from student;
+

Fmm e e F————— Fmmm————— S +
| ID | Student_Name | Age | Phone | Address |
i Fm————— Fmm—————— Fmmm—————— +
| 1 | Amit I 18 | 98769876 | Sonipat |
| 2 | Sonam | 16 | 8876987& | gurugram |
| 3 | Mahesh I 17 | 68769876 | jaipur I
| 4 | Priya I 18 | 78769876 | noida I
IT—Agatka 5 — |
jay elhi
ILE sonal 15 ") nolida I
| & | Tanya | 16 | NULL delhi I
e btk Sttt +————————— tm—————— +

8 rows in set (0.00 sec)

mysql?> delete from student where ID=1 and Aget=18;
Query OK, 1 row affected (@.11 sec)

mysql> select * from student;

Fmm—m e m—m - - d———— F——————— +
| ID | Student_Name | Age | Phone | Address |
o1 o o o) i o i e S e T o e +
| 1 | Amit I 18 | 98769876 | Sconipat |
| 2 | Sonam | 16 | 88769876 | gurugram |
| 3 | Mahesh I 17 | 68769876 | jaipur I
| 4 | Priya I 18 | 78769876 | noida I
| S | Monika I 17 | 98769876 | delhi I
| 3 | sonal I 18 | 94769857 | noida I
| & | Tanya | 16 | NULL | delhi I
et B it e d———— +——————— +
7 rows in set (0.00 sec)

Example 2: Let’s delete all data from the student table. To do this, we need to give a condition that
matches all the records. As IDs are greater than 0, so let’s delete all those records where ID is greater
than 0. Note: The same can be done using the truncate command. truncate student;

mysql)> select % from student

i b e e e e +
| ID | Student_Name | Age I Phone | Address |
B T Fm———— e ——— e —— +
1	Amit	18	98769876	Sonipat
2	Sonam	16	88769876	gurugram
3	Mahesh	17	68769876	jaipur
4	Privya	18	78769876	noida
S	Monika	17	98769876	delhi
3	sonal	18	94769857	noida
6	Tanya I 16	NULL	delhi I	
e et R T R - e ——— +
7 rows in set (0.00 sec)

mysql)> delete from student where ID>Q;
Query OK, 7 rows affected (0.11 sec)

mysql) select ¥ from student;
Empty set (0.00 sec)

Aggregate Functions:

Aggregate functions are those functions that operate on a list of values and return a single-digit
value or we can summarize the data using aggregate functions.

1. Max: it is used to find out the maximum value from a column.

mysql> select ¥ from student

R it i i el e e ———— +
| ID | Student_Name | Age | Phone | Address |
Fm—m— +————— Fo—m———— ——— Fo—————— +
Il 1 | Amit | 18 | 98769876 | Sonipat |
2	Sonam	16	88769876	Gurugram
2	Mahesh	17	68769876	Jaipur
l 4	Priva	18	78769876	Noida
5	Monika	17	98769876	Delhi

| & | Raman | 18 | 98765876 | Noida |
I 7 | Pawan I 19 | 28765876 | Delhi

e it Tl e ———— e ———— +

mysql> select max(ID) from student;

1 row in set (R.09 sec)

2. Min: it is used to find out the minimum value from a column.

mysql> select min(ID) from student;

1l row in set (0.8 sec)

3. Avg: itis used to find out the average value from a column.

mysql) select avglAge) from student;

| avalAge) |

| 17.5714 I
l row in set (.05 sec)

4. Sum: it is used to find out the sum of all values of a column.
mysql) select sum{Age) from student;

1 row in set (.02 sec)

5. Count: it is used to count the number of values in a column.
mysql) select count(ID) from student;

1 row in set (0.00 sec)

Note: Distinct keyword can be used with aggregate functions to find out the max, min, sum, avg,
and count of unique values.

Example: Let’s find out the total number of cities from where students came to study. Here more
than one student is from the same city. So, we need to use distinct keyword along with the count
function.

mysql? select *¥ from student;

e ——— mm et +
| ID | Student_Name | Age | Phone | Address |
et it - Fmmmm————— Fmm e ——— +
I 1 Amit | 18 | 98769876 | Sonipat |
2	Sonam	16	88769876	GQurugram
2	Mahesh	17	68769876	Jaipur
4	Priva	18	787698756	Noida
I 5	Monika	17	98769876	Delhi
&	Raman	18	98765876	Noida I
I 7 | Pawan I 19 | 28765876 | Delhi |
Fmm e e Fmm e ———— Fmm e ———— +

7 rows in set (@.00 sec)

mysql?> select count(distinct(Address)) from student;
+

1l row in set (8.080 sec)

Group by clause:

The GROUP BY clause is used to group rows that have the same values into summary rows. Group
by clause is often used with aggregate functions like MAX(), MIN(), SUM(), AVG() and COUNT() to
group the result by one or more columns.

e |t can be used with or without where clause in the select statement.
e |tisapplied only to numeric values.

e |t can’t be applied with distinct keyword.
Query: group by <column name>

Example 1: Let’s count the number of students of having same age in the student table.

mysql> select % from 5tudent

B B Fmmm——————— +
| ID | Student_Name | Age | Phone | Address |
Fmm Fm———— Fmmmm—————— e —————— +
I 1 | Amit | 18 | 98769876 | Sonipat |
| 2 | Sonam | 16 | 88769876 | Gurugram |
I 3 | Mahesh | 17 | 68769876 | Jaipur |
| 4 | Privya | 18 | 78769876 | Noida |
I 5 | Monika | 17 | 98769876 | Delhi |
| & | Raman | 18 | 98765876 | Noida |
I 7 | Pawan 19 | 28765876 | Delhi |
e ittt et T Fmmmm Fm—m————— +

7 rows in set (0.05 sec)
mysql> select Age,count(ID) as Students_Count from student group by Age;

+

| Age | Students_Count |

e ————— e ———

| 16 | 11

| 17 | 2 |

| 18 | 31 i

I 19 | 11 aliasing
e ————— e ——— +

4 rows in set (0.86 sec)

Example 2: Let’s city-wise find out the minimum value of ID.

rnysql) select Address, min(ID) from student group by Address;

+
| Address | min(ID) |

| Delhi | S
| Gurugram | 2
| Jaipur | 3
| Noida | 4
| Sonipat | 1

S rows in set (B.060 sec)

Having clause: It is used to filter the result set of group by clause in the select statement.

Note: To filter the result set of the group by clause, only having clause can be used whereas for all
other queries where clause is used.

mysql) select count(ID) as No_of _student,Age from student group by Age having Age=18;

1 row in set (@. @B sec)

Joins: Joins are used to combine rows from multiple tables.
Types of joins:

1. Cartesian product (cross join): It gives all possible combinations from more than one table.
It combines every row from one table with every row from another table. Suppose we have
5 rows in the first table and 4 rows in the second table then the total number of rows in the
Cartesian product of these two tables will be 20 rows.
Cardinality of the final table of Cartesian product = cardinality of the first table *
cardinality of the second table.
Example: we have two tables’ ‘student’ and ‘awards’. Let’s apply the Cartesian produc
t to these two tables. (Refer page No. 180 for student & awards table)

mysql) select ¥ from student awards ;

B S T b E TP m————— P +
| ID I Student _Name | Age I Phone I Address | ID | award |
B T Tt i T S P, m————— Fmm——————— +

1 Amit 18 98769876 Sonipat 1 old

1 Amit 18 98769876 Sonipat 2 ronze
1 Amit 18 98769876 Sonipat 2 silver
1 Amit 18 98769876 Sonipat 3 bronze
2 Sonam 16 88769876 Gurugram 1 old

2 Sonam 16 88769876 GQurugram 2 ronze
2 Sonam 16 88769876 GQurugram 2 silver
2 Sonam 16 88769876 Gurugram 3 bronze
3 Mahesh 17 68769876 Jaipur 1 old

3 Mahesh 17 68769876 Jaipur 2 ronze
3 Mahesh 17 68769876 Jaipur 2 silver
3 Mahesh 17 68769876 Jaipur 3 bronze
4 Priya 18 78769876 oida 1 old

4 Priya 18 78769876 oida 2 ronze
4 Priya 18 78769876 oida 2 silver
4 Priya 18 78769876 oida 3 bronze
S Monika 17 98769876 Delhi 1 old

S Monika 17 98769876 Delhi 2 ronze
S Monika 17 98769876 Delhi 2 silver
5 Monika 17 98769876 Delhi 3 bronze
6 Raman 18 98765876 oida 1 old

6 Raman 18 98765876 oida 2 ronze
6 Raman 18 98765876 oida 2 silver
6 Raman 18 98765876 oida 3 bronze
7 Pawan 19 28765876 Delhi 1 old

7 Pawan 19 28765876 Delhi 2 ronze
7 Pawan 19 28765876 Delhi 2 silver
7 Pawan 19 28765876 Delhi 3 bronze
------------------------ B T e o

28 rows in set (0Q. 05 sec)

2. Equi join: It joins the tables based on one common column. However, the final result will
consist of a common column from both tables.

Example: we have two tables - student and awards. Let’s apply equi join on these two tables.

mysql)> select ¥ from student,awards where student.ID=awards.ID;

------------------- P e T S T O L b b s R S T
| ID | Student_Name | Age | Phone | Address | ID | award |
e m e Fm————— mmmm—— mmm——————— Fm————— Fmmm————— +
I 1 | Amit | 18 | 98769876 | Sonipat | 11| gold |
2	Sonam	16	88769876	Gurugram	2	bronze
2	Sonam	16	88769876	Gurugram	2	silver
3	Mahesh I 17	68769876	Jaipur	3	bronze	
fmm e e — Fmmm——————— Fmmm e ———— Fm————— Fmm—————— +
4 rows in set (0.06 sec)

Here both the tables have common column IDs. So, to avoid ambiguity (confusion), we need
to mention the table name before the column name.

mysql> select ID,Student_Name from student,awards where student.ID=awards.ID;
EﬁROR 1052 (23000): Column 'ID’ in field list is ambiguous

12
mysql)> select student ID,Student_Name from student,awards where student.ID=awards.ID;
+

(Vo]
o}
3 .
o
3

4 rows in set (0.00 sec)

Natural Join: It joins the tables based on one common column. However, the final result will
consist of a common column only once.
Example: we have two tables’ - students and awards. Let’s apply natural join on these two

tables.
mysql) select % from student natural Joxn awards;

Fmmm e e Fm————— e Fmmmm———— +
| ID | Student_Name | Age | Phone | Address | award |
R S . fommmm—mm = i e +
I 1 | Amit | 18 | 98769876 | Sonipat | gold |
| 2 | Sonam I 16 | 88769876 | Gurugram | bronze |
| 2 | Sonam | 16 | 88769876 | Gurugram | silver |
I 3 | Mahes I 17 | 68769876 | Jaipur | bronze |
R s RS S R ey fmmmecamaoa g A R +
4 rows in set (0.00 sec)

Here both the tables have common column IDs. But there is no ambiguity arises on the name
of the common column.

mysql)> select ID,Student_Name from student natural join awards;

| ID | Student_Name |
g +

I 1 | Amit |

| 2 | Sonam |

| 2 | Sonam |

I 3 | Mahesh |
B e itttk

4 rows in set (0.00 sec)

