

Unit : 1 Review of Class - 11

Introduction to Python Programming Language

Python features:

 Interpreter based programming language: Line by line execution of Source code.

 Free and Open source: Source code is available free of cost. Free to use for

commercial purposes.

 Portable: Same code can be used for different machines.

 Object Oriented Support: Supports both procedural and OOPs.

 Extensible: Python code can be written in other languages.

 Dynamically typed: Variable datatype can be decided at runtime.

 Robust Standard Library: Extensive standard library available for anyone to use.

 Easy to code and read: Simple syntax, indented blocks make it easy to read and code.

Coding modes in python:

 Interactive mode: Interactive mode is used when a user wants to run one single line or

one block of code. In interactive mode, commands typed at the IDL prompt are executed

when the Enter key is pressed.

 Script mode: Script mode is where you put a bunch of commands into a file (a script),

and then tell Python to run the file. Script mode runs your commands sequentially.

Indentation:

 Indentation refers to the spaces at the beginning of a code line. Where in other

programming languages the indentation in code is for readability only, the indentation in

Python is very important. Python uses indentation to indicate a block of code.

Python Comments:

 Comments are statements in python code that are ignored by the interpreter.

 Comments can be used to explain Python code.

 Comments can be used to make the code more readable.

 Single line comments: These are the statements that start with #

 Multiline comments: Since Python will ignore string literals that are not assigned to a

variable, you can add a multiline string (triple quotes) in your code, and place your

comment inside it:

Python character set:

 A character set is a set of valid characters acceptable by a programming language in

scripting.

 Python supports all ASCII / Unicode characters that include:

o Alphabets: All capital (A-Z) and small (a-z) alphabets.

o Digits: All digits from 0-9.

o Alphabets: All capital (A-Z) and small (a-z) alphabets.

o Special Symbols: Python supports all kinds of special symbols - " ' l ; : ! ~ @ # $

% ^ ` & * () _ + – = { } [] \ .

o White Spaces: White spaces like tab space, blank space, newline, and carriage

return.

o Other: All ASCII and UNICODE characters are supported by Python that

constitutes the Python character set.

Python Tokens:

 A token is the smallest individual unit in a python program.

 All statements and instructions in a program are built with tokens.

 Token Types:

o Keywords: Keywords are reserved by python environment and cannot be used

as identifier. There are 35 keywords in python. You may try to use the following

code to get a list of keywords supported in your python version.

['False', 'None', 'True', 'and', 'as', 'assert', 'async', 'await', 'break', 'class', 'continue',

'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is',

'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

o Identifier: Identifiers are the names given to any variable, function, class, list,

methods, etc. for their identification. Python is a case-sensitive language, and it

has some rules and regulations to name an identifier. Here are the rules.

 An Identifier starts with a capital letter (A-Z) , a small letter (a-z) or an

underscore(_).

 It can have digits but cannot start with a digit.

 An identifier can’t be a keyword.

 My_name, __init__, Seven10 are valid examples.

 20dollers, my.var, True are invalid examples.

o Literals: Literals are the values stored in program memory and are often referred

to by an identifier.

 String Literals: The text written in single, double, or triple quotes

represents the string literals in Python.

 Escape characters: To insert characters that are illegal in a

string, use an escape character. An escape character is a

backslash \ followed by the character you want to insert. Some

of the escape characters are as under:

Escape Character Result

\' Single Quote

\" Double Quote

\\ Backslash

\n New Line

\t Tab

\b Back space

 Numeric Literals: A number represented in various forms is a

Numeric Literal.

o Integer Literal: It includes both positive and negative

numbers along with 0. It doesn’t include fractional parts. It

can also include binary, decimal, octal, hexadecimal literal.

o Float Literal: It includes both positive and negative real

numbers. It also includes fractional parts. 99.62, 0.35E-7 are

valid float literals.

o Complex Literal: It includes a+bi numeral, here a represents

the real part and b represents the complex part.

 Boolean Literal: Boolean literals have only two values in Python.

These are True and False.

 Special (None) Literal: Python has a special literal ‘None’. It is used

to denote nothing, no values, or the absence of value.

 Collection Literal: Literals collections in python includes list, tuple,

dictionary, and sets.

o Operators: Operators are responsible for performing various operations in

Python. The operators are of two types Unary (Operates on single operand)

and Operators that operates on two operands (binary).

o Arithmetic Operators: Arithmetic operators are used with numeric

values to perform common mathematical operations:

Operators Name Example

+ Addition 10+20 gives 30

- Subtraction 20-10 gives 10

* Multiplication 30*2 gives 60

/ Division 12/3 gives 4.0

// Floor Division 10//3 gives 3

10.0//3 gives 3.0

% Modulus 10%4 gives 2

** Exponentiation 3**2 gives 9

o Assignment Operators: Assignment operators are used to assign

values to variables:

Operator Example Equivalent

= n = 10 n = 10

+= n+=10 n=n+10

-= n-=10 n=n-10

= n=10 n=n*10

/= n/=10 n=n/10

//= n//=10 n=n//10

= n=10 n=n**10

%= n%=10 n=n%10

o Relational Operators: These are used to compare two values and

returns a True or False answer.

Operator Name Example

== Equal to 10 == 10 is True

!= Not Equal to 10 != 10 is False

> Greater Than 10 > 5 is True

< Less Than 5 < 10 is False

>= Greater than or Equal

to

10>=5 is True

<= Less than or Equal to 5 <=10 is True

o Logical Operators: They are generally used along with Relational

Operators to extend their scope. However, python allows them to be

used independently.

Operator Description Example

And Returns True if both statements

are true

10 > 20 and 30 <40

will return False

Or Return True if one or both the

statements are True

10 > 20 or 30<40

will return True

Not Reverses the result not True is False

o Membership Operator: Membership operators are used to test if a

sequence is presented in an object/collection:

Operator Description Example

In Returns True if a sequence with

the specified value is present in

the object

10 in [5,10,20] will

return True

not in Returns True if a sequence with

the specified value is not present

in the object

20 not in [5,10,15]

will return True

o Identity Operator: The Identity operator returns true only if two

objects occupy the same memory location.

Operator Description Example

Is Returns True if both

variables are the same object

[10,20,30] is [10,20,30]

will return False since

both occupy different

memory locations even if

they are equal

is not Returns True if both

variables are not the same

object

10 is not 10 will return

False since both are same

objects

o There are other operators like the Bitwise operators and lambda

operator (function) - These are not in syllabus.

o Operator precedence: In a mathematical or logical expression the

operator precedence plays an important role to decide which operator

will be executed first. The following table elaborates their

precedence.

Operator Remarks

() Even though () is not an operator

but it plays an important roe in

deciding which part of the

expression should be evaluated

first.

** The unique feature of ** is that it

is the only operator that is

evaluated from right to left

*, /, //, % All the four have same

precedence

+, - They are next

== != > >= < <= is is not in

not in

All the relational, identity and

membership operators

Not Not being a unary operator has

precedence over and/or

And Have higher precedence over or

Or Lowest precedence

Some Interesting operations using operators that are often asked in Examinations:

Expression Output Explanation

2**3**2 512 Since ** is evaluated from

right to left, first 3**2 is

evaluated to 9 and 2**9

evaluated 512

10 or 20 10 If the first operand of an “or”

expression is true, return the

first operand. Otherwise,

evaluate and return the second

operand.

0 or 10 10 0 is False and hence second

operand is returned.

10 and 20 20 If the first operand of an

“and” expression is false,

return the first operand.

Otherwise, evaluate and return

the second operand.

Note: Any value is interpreted as “false” for the above purposes if it is 0, 0.0, None, False, or an

empty collection. Otherwise, it is interpreted as “true” for the above purposes. So, 10 and 20,

being nonzero numbers, are “true.”

25 % -4 -3 Python evaluates the

modulus with negative

numbers using the formula:

(a//b) * b + a%b == a

25//-4 gives -7 with floor

division.

-7 * -4 gives 28.

Hence a%b must be -3 to

make the expression

correctly equate to 25.

Note: The sign of the result

is always that of the divisor.

Questions:

Q.1 Which one of the following is not a valid identifier?

a) true

b) __init__

c) 20Decades

d) My_var

Q.2 Which of the following keywords is a python operator?

a) for

b) break

c) is

d) else

Q.3 What will be the output of the operation print("\\\\\\") ?

a) \\\\\\

b) \\\

c) \\

d) Error

Q.4 What will be the output of the expression print(10+20*10//2**3-5)

a) 30

b) 40

c) 1005

d) 130

Q.5 Evaluate the expression print(20%-3)?

a) -1

b) -2

c) 2

d) Error

Q.6 What will be the result of the expression True of False and not True or True

a) True

b) False

c) None

d) Error

Q.7 What will be the output of the following program?

a = {'A':10,'B':20}

b = {'B':20, 'A':10}

print(a==b and a is b)

a) True

b) False

c) None

d) Error

Q.8 Which of the following statements is false for python programming language?

a) Python is free and Open source.

b) Python is statically typed.

c) Python is portable.

d) Python is interpreted.

Flow of Control in Python

 Python supports sequential flow of control.

 Python supports branching flow of control using if, elif and else blocks.

 Python supports iteration control using for loop and while loop.

Python if, elif and else blocks:

 Python uses the relational and logical operators along with if and elif to create

conditional blocks that executes a set of python statements depending on the truth value

of the condition.

 The beginning of a block starts from the next line just after the : symbol and the block is

indented.

 There could be a nested if construct as the following program shows:

With respect to the CBSE examination the students should thoroughly understand the construct

of if, elif, else and often a question comes where you need to identify the errors in each

program.

Q. Re-write the following program after removing errors, if any, and underline all the

corrections made.

a = input("Enter a number:")

b = int(input("Enter a number:"))

if a = b:

 a + b = a

else

 b = b + a

print(a,b)

Hint: There are four errors in the program

if block

elif block

block

else block

Nested if block

block

Python for loop:

 Python for loop is used to iterate a set of python statements till a counter reaches its

limit.

 Python for loop can also be used to iterate over a collection object (List, tuple)/ iterable

(string, dictionary) using membership operators.

 Python while loop is used in situations where we have no idea as when the loop is going

to end since there are no counters.

 range() function in python: The range() function returns a sequence of numbers,

starting from 0 by default, and increments by 1 (by default), and stops before a specified

number.

range() example Output sequence

range(10) 0 1 2 3 4 5 6 7 8 9

range(1,11) 1 2 3 4 5 6 7 8 9 10

range(1,11,2) 1 3 5 7 9

range(10,0,-1) 10 9 8 7 6 5 4 3 2 1

range(start, stop, step)

Step can be +ve or -ve

Stop can be +ve or -ve

but is never reached.

Start can be +ve or -ve

 break statement in a loop: The break statement stops the loop iteration and exits from

the loop.

 continue statement: Whenever a continue statement is encountered in a loop the

remaining statements after the continue statement are not executed and the loop enters

next iteration.

 else block in loop: The else block in a loop is executed when the break statement is not

encountered inside the loop.

Students are advised to go through the above content since various operations involving the

python data structures, user defined functions, data file handling and database interaction will

require a thorough understanding of iteration. In CBSE examination you may not get a direct

question from this topic except for a few MCQ or Assertion-Reasoning based question.

 The following question is an ASSERTION AND REASONING based Questions. Mark

the correct choice as:

i) Both A and R are true, and R is the correct explanation for A

ii) Both A and R are true, and R is not the correct explanation for A

iii) A is True but R is False

iv) A is false but R is True

Q. ASSERTION: In python loop else block will be executed if the loop successfully

terminates after complete iteration.

REASON: A python loop else block will not execute if a break statement is encountered

in a loop.

Q. ASSERTION: A continue statement in a loop is mandatory.

REASON: A continue statement will skip the remaining statements in the loop after it is

encountered.

The loops exits if the

number n is divisible by

any number between to

and half of the number

The continue statement

will not print any number

that is odd

The loop else will be

encountered only for a

prime number since break

will not get executed

during any iterations

Python Strings

 Python strings are a set of characters enclosed in single quotes, double quotes, or triple

quotes.

 Python strings are immutable - Once a string is created, it cannot be changed. You can

create a new string with the desired modifications, but the original string remains

unchanged.

 Python Strings are ordered: Strings maintain the order of characters in the sequence.

This means that the characters in a string have a definite order, and this order will not

change.

 Python Strings are iterable: You can iterate over the characters in a string using loops

like for loops or comprehensions.

 Characters in a String are indexable: Each character in a string can be accessed using an

index. Indexing starts from 0, so the first character of a string has an index of 0, the

second character has an index of 1, and so on.

String examples:

Accepting a string from user: We can use

input() method to acquire a string from user.

String operations:

 Concatenation: More than one string can be joined using the (+) operator to create a

new string.

 Replication: A string can be multiplied by a number to create a replicated string.

The string inside

an input() method

is a prompt

 Indexing: Each character of a string can be accessed using two types of indexing.

o Forward indexing: First character of a string has an index 0 and next has 1

and so on.

o Reverse indexing: Last character of the string is having an index of -1 and

last but one has -2 and so on.

 We can access any element of the string using indexing.

 Slicing: A substring can be acquired from an existing string using the slicing

operation.

 Traversal: We can traverse a string using iteration and specifically using for loop.

o Iterate

using membership:

o Iterate using indexing:

Str[start:stop:step]

Stop is not

reached.

 String Methods: Python has a few built-in and string library methods (also built-in)

to manipulate strings. Some of them as elaborated below with examples.

o Global Methods: These methods accept string as a parameter –

methodName(string)

o String Library Methods: These methods have the syntax

string.methodName()

 Methods that return True or False:

isalnum() – Returns True is the string comprises of only alphabets and

digits

isalpha() – Returns True if all the characters are Alphabets

isdigit() – Returns True if all the characters are digits.

isspace() – Returns True if all the characters are spaces

isupper() – Returns True if all the characters are upper-case alphabets

islower() – Returns True if all the characters are lowercase alphabets

startswith(substr) – Returns True if a string starts with the given

substring.

endswith(substr) – Returns True if a string ends with the given

substring.

 Methods that return a number based on the requirement:

count(substr) – counts the occurrence of a substring inside a string.

The general format of this function is count(substr, start, stop) where

stop index is not included. Both start and stop are optional.

 index(substr) – Returns the index of the first occurrence of a

substring inside a given String. The general format of this method is

index(substr, start, stop) where stop index is not included. Both start

The first M is not

included since

the start index is

2

The first M and

the last M are not

included since

the start index is

2 and stop is 10

and stop are optional.

 find(substr) – Returns the index of the first occurrence of a substring

inside a given String. The general format of this method is

index(substr, start, stop) where stop index is not included. Both start

and stop are optional. This is same as index()

index(substr) find(substr)

This function throws a ValueError

if the substring is missing from

the string.

This function returns -1 if the

substring is missing from the

string.

 Methods that modify an existing string and returns a new string:

capitalize(): Converts the first character of a string to upper case and

all other alphabets to lower case. Incase the first character is not an

Alphabet, only the remaining alphabets will be converted to lower

case.

title(): Converts all the first characters of each word of a string to

upper case, in case they are alphabets. The remaining alphabets are

converted to lower case.

replace(oldsubstr, newsubstr): Replaces all the first parameter with

the second parameter and returns a new string.

The first M is not

included since

the start index is

2 and hence the

index value of the

next M is 6

The start is 7

hence first two

M’s are not

included.

upper(): Converts all the lowercase alphabets in a string to upper case

and returns a new string.

lower(): Converts all the uppercase alphabets in a string to lowercase

and returns a new string.

 Methods that create a new object from an existing string:

partition(substr): Returns a tuple with three elements from a string

where the middle element is the substring.

split() – Returns a list with a sequence of substrings by eliminating all

the spaces and newlines from the existing string.

 split(substr): Returns a list with a sequence of substrings by

eliminating all the occurrences of the substring from the existing

string.

 Observe that all the A are removed because of the above method call

and since there is no character after the last A, an empty string is

introduced.

Questions:

Q.1 What will be the output of the following python statement?

s = "HOME ALONE"

p = s.split("O")

print(p[1][:2]+p[-1])

a) ALNE

b) MENE

c) MEONE

d) MEAL

Q.2 What will be the output of the following python code?

s="finaL eXam"

print(s.title())

a) FinaL Exam

b) Final Exam

c) FinaL exam

d) Error

Q.3 What is the output of print("hello".find('E'))?

a) 1

b) 2

c) -1

d) Error

Q.4 Which of the following statements is False for a python String?

a) Python Strings are immutable objects.

b) Python Strings can be accessed using indexing.

c) Python Strings cannot be empty.

d) We can get a substring from an existing string using slicing.

Q.5 What will be the correct output of the following string operation?

"MALAYALAM".partition("MA")

a) ("MA","LAYAL", "AM")

b) ("","MA","LAYALAM")

c) ("MA","LAYALA","AM")

d) ("MALAYAL","AM","")

Q.6 Which of the following statements will generate an error?

st = "PYTHON"

t = st*5 Statement(1)

u = st[0] + "M" Statement(2)

st[0] = "K" Statement(3)

st = st + st Statement(4)

a) Statement(1)

b) Statement(2)

c) Statement(3)

d) Statement(4)

Q.7 What will be the output of the following python statement?

s = "MONGO"

print(sorted(s))

a) "GMNOO"

b) ["GMNOO"]

c) ["G","M","N","O","O"]

d) Error

Q.8 What will be the output of the following string operations:

s="Python is osome good"

i) print(s.index('o',13,20))

ii) print(s[2:4]+s[14])

Python List

 Ordered collection of objects - Lists maintain the order of elements as they are inserted.

 Lists are mutable - Lists can be modified after creation. You can add, remove, or modify

elements freely.

 Heterogenous - Lists can contain elements of different data types. For example, a list can

contain integers, strings, floats, and even other lists.

 Dynamic - Lists in Python can grow or shrink in size dynamically. You can append new

elements, insert elements at specific positions, or remove elements as needed.

 Indexed - Elements in a list are indexed with integers starting from 0. This allows for easy

access to individual elements using their index.

 Nesting - Lists can contain other lists as elements, allowing for the creation of nested data

structures.

 Built-in Methods - Python lists come with built-in methods for various operations like

sorting, reversing, searching, etc., making them versatile for a wide range of tasks.

 Iterable - Lists can be used in iterations using loops (e.g., for loop)

 Slicing - Lists support slicing operations, allowing you to extract sublists by specifying a

range of indices.

List Examples:

Accepting a list from User: eval() method can be used along with input() method to acquire a

list from the console.

List Operations: Like a String, python lists also support operations like Concatenation,

Replication, indexing, slicing and iteration. The only difference is that we can modify the

elements of a list using indexing, slicing and index-based iteration. In this study material we

shall see this component of python list that makes it unique mutable data structure.

 Indexing of nested lists:

Observe here that the slice 2:2 is not

removing any element from the list,

but inserting the elements of the new

list in the given index 2

Observe here that the slice 2:3 is

removing element 5 from the list and

inserting the elements of the new list

in the given index 2

Changing list elements using indexing: We can change the elements of a list using indexing

and assignment operation.

 Changing the list elements using slicing: We can change the replace the contents of a

list using slicing too. Given below are some interesting examples.

 Changing list elements using index-based iteration: We can modify the elements of a

list using index-based iteration.

 Deleting elements of a list using del command: del command may be used to delete

one or more than one element of a list either using indexing or using slicing.

Note: Deleted elements using del command cannot be retrieved back.

 List Methods: Python has a few built-in and list library methods (also built-in) to

manipulate lists. Some of them as elaborated below with examples:

o Global Methods: These methods accept string as a parameter –

methodName(list)

o List member methods: These methods have the format

listName.methodName()

clear() – Removes all the elements from a list and makes the list empty.

copy() – Creates a copy of the existing list and both list occupy different memory

locations.

append() – Adds an element to the end of an existing list

extend() – Individually appends the contents of one list to another list

insert() – Inserts an element to a given index. The remaining elements are

automatically shifted to the right.

pop() – Removes and returns the last element from the existing list.

pop(index) – Removes and returns the element from the given index.

remove(element): Removes the element from the given list without returning the

element. Return a ValueError is the element is not in the list.

count(element) – Counts and returns the number of occurrences of the given

element.

Note: Unlike count() in String there is only one parameter to count() in list.

index(element, start) – Returns the index of the first occurrence of the given

element from the list.

If the start index is not given, the index() returns the index of first occurrence

only.

sort() – Sorts the list in ascending order. Unlike sorted() this method sorts the

same list and does not return a new list.

reverse() – Reverses the list based on value (ASCII value)

Questions:

Q.1 What will be the output of the following list operations?

data = [10,20,30,[40,50,60],[70,80]]

a) print(data[3]+data[-1])

print(data[-2][-2])

Q.2 What will be the output of the following python program:

data = [10,20,30, 60,70]

data[3:3]=[40,50]

print(data)

data.pop(3)

print(data)

data.extend([10,20])

print(len(data))

Q.3 Ganga is learning to use python Lists. Help her to get the answers of the following

operations based on the given list:

data = [10,20,30]

data[1:3]=[5,10]

print(data)

data.extend([3,4])

x =data.count(10)

print(data[x:])

data.sort()

print(data)

print(data.pop(2))

Q.4 Write a python program that accepts a list of integers from user and creates a new list

from the existing list containing all the numbers that have three or more digits.

Eg: for existing list [10,100, 99,200,1000] the new list should be [100,200,1000]

Q.5 Write a python program that accepts a list of countries from user and prints all the

countries whose number of alphabets is more than 5.

Q.6 Write a python program that accepts a list of integers from user and prints all the

integers that have 8 as the last digit.

Eg: for the list [10, 28, 8, 86, 98] the program should print 28 8 98

See here that the latest

value is updated for the

existing key A

Q.7 For the given list

d=[10,30,20,15,45,50,80,90]

what will be the output of the following slicing operation:

d[2:7:2]

a) [20,15,45] b) [20, 45, 80] c) [30, 15, 50] d) [20, 45]

Python Dictionary

 Python dictionaries are collection of key value pairs enclosed in {}

 Python dictionaries are un-ordered.

 Python dictionary keys are immutable (numbers, string, tuple)

 Python dictionary values are mutable.

Dictionary Examples:

Dictionary Operations:

 Displaying Values for a given Key: We can use dictName[key] to get the value.

 Adding a Key-Value pair to a dictionary: We can add a key-value pair to a dictionary

using the syntax dictName[key]=value. In case we are trying to add an existing key, then

the latest value will replace the old value of the existing key without adding a new key-

value pair.

 Dictionary Methods: Like Strings and lists, dictionaries too have global and member

functions.

o Global functions: The global functions include len(), max(), min(), sum() and

sorted()

o Dictionary Member Methods: These methods are called using the syntax

dictName.methodName()

clear() – Removes all the elements from the dictionary and makes it empty.

copy() – Creates a copy of the existing dictionary.

get(key) – Returns the value for a given key.

keys() – Returns a view object containing the keys of the dictionary, that can be

converted to list using a list() method.

values() - Returns a view object containing the values of the dictionary, that can

be converted to list using a list() method.

items() - Returns a view object containing the key-value pairs as tuples of the

dictionary, that can be converted to list of tuples using a list() method.

update() – Used to add the contents of one dictionary as key-value pairs in

another dictionary.

pop(key) – Removes a key-value pair from a dictionary and returns only the

value.

popitem() – Reoves the last added key-value pair from the dictionary and returns

a tuple containing the removed key-value pair.

fromkeys(key-seq, value) – Returns a dictionary containing the keys as the

element of the sequence(list, tuple) and a single optional value.

setdefault(key, value) – Returns the value for the key if the key is in the

dictionary, else adds the key-value pair to the dictionary.

Questions:

Q.1 Which of the following statements is False for a python dictionary?

a) Dictionary Keys can be created using another dictionary.

b) Dictionary values can be a dictionary.

c) Dictionary Values are mutable.

d) dict() function can be used to create a dictionary.

Q.2 What will be the output of the following program?

d={'A':10,'B':20,'C':30,'D':40}

del d['C']

print(d)

x = d.popitem()

print(x)

 Questions 3 is an ASSERTION AND REASONING based Questions. Mark the correct

choice as:

i) Both A and R are true, and R is the correct explanation for A

ii) Both A and R are true, and R is not the correct explanation for A

iii) A is True but R is False

iv) A is false but R is True

Q.3 ASSERTION: A python dictionary remains the same even if we interchange the position

of key-value pairs.

REASONING: Dictionaries are un-ordered collection of key-value pairs.

Q.4 What will be the output of the following?

d = {"A":10, "B":20, "C":30, "A":40}

print(d)

a) {"A":10, "B":20, "C":30, "A":40}

b) {"A":40, "B":20, "C":30}

c) {"A":50, "B":20, "C":30}

d) KeyError

Q.5 Sapna wants to understand the concept of methods in a dictionary. Help her to find the

answers of the following operations on a python dictionary:

d = {'M':10, 'N':20, 'O':30, 'P':40}

r = d.popitem()

print(r)

x = d.pop('N')

print(x)

print(list(d.keys()))

d.setdefault('X',60)

print(d)

Q.6 Write a python program that increases the values by 10 for the dictionary alphabets as

keys and numbers as values where ever the key is a vowel.

Python Tuples

 Python tuples are a collection of objects enclosed in ().

 Python tuples are immutable.

 Python tuples are ordered.

 Python tuples are indexed like lists and strings.

 Python tuples may contain heterogenous elements.

 Python tuples can be nested.

Tuple examples:

Tuple operations: Like string and lists tuples too have concatenations, replication, indexing,

slicing and iteration operation. We are not going to discuss them here since you can follow the

list and strings to learn and practice them.

Tuple methods: Tuples have a few global methods and only two member methods.

o Global Methods – tuple(), min(), max(), len(), sum() and sorted(). We shall

discuss here only the sorted() method.

o Tuple member methods:

index(element) – Like lists tuple too returns the index of the first occurrence of

the element.

count(element) – Counts the occurrences of an element from a tuple as we have

learned in lists.

Python Functions

Python Function:- Functions is a block of code that is identified by its name. A function

can be executed by calling it. Writing the name of the function will call a function.
Functions are internally declared in a separate memory area. So a function can declare

variables with the same as declared in the outer part of the program.

Type of function :- Build in function (all functions defined by python min() max() , lent()

etc, User-defined functions (defined by the user)

Advantage of function :- (i) Reduces the size of the program (ii) improves reusability of
code

def keyword:- def keyword declares a user defined function followed by parameters

and terminated with a colon.

return keyword :- whenever the return keyword is executed inside a function it returns

the control back to its caller along with some value if passed explicitly. Writing return is

not compulsory and we can write as many return keywords as needed but only one return

keyword is executed.

Actual parameters :- When we call a function and pass some values to the function.

These passed values are called actual parameters.

Formal parameters :- The parameters declared in the header part of the function is

called formal parameters or the values received by the functions from its caller is called
formal parameters.

Default parameters:- It is formal parameters with the assignment of values. These
values are used if the caller does not provide value to that parameter. Remember default
parameters are written after not default parameters.

def << name of the >> (formal parameters) : function body is always writer in
tab indentation

code hare

code here

out of scope of function. The function call can be placed after this part.

Example :-

def myfunction(a,b,c=10) : a,b and c is formal parameter and c is with default values
print(a,b,c)
return (a+b+c)

total = myfunction(10,20,30) # 10 12 and 30 are actual parameter.

Q. Write a function findbig that take 2 integers as parameters and returns the largest
value.

def findbig(a,b):
if a>b:

 return a
 else:
 return b
 x,y=5,10
 bigvalue=findbig(x,y)

 Practice questions:

(i) def fun2(name,age):

print(age,name)
func2(25,”Ramesh”) Ans :- Ramesh, 25

(ii) def fun3(a,b,c):

return a+1,b+2,c+3 #if more than 1 values are returned than it will
be as tuple

t=fun3(10,20,30)
 print(t) Ans:- (11,12,33)

(iii) def fun2(list1):
for x in list1:

print(x.upper(),end=”#”)
fun2([‘Rajesh’,’Kumar’]) Ans:- RAJESH # KUMAR

(iv) def fun2(num1,num2):
for x in range(num1,num2): if

x%4==0:
print(x,end=’ ‘)

fun2(10,20) Ans:- 10 12 16 18
(v) def prog(email):

for x in email.split(“.”):
if x.isalpha():

print(“alphabet”)
 elif x.isdigit():

print(“digit”)

 elif x.isupper():
print(“upper”)

else:
print(“all the best”)

prog(“rajesh.123.yahoo”)

Ans :- Alphabet Digit
Alphabet

(vi) def check(x,y):
if x != y:

return x+5
else:

return y+10
print(check(10,5)) Ans :- 15

