

75

Nested loops

Nested loops refers to a loop within a loop.

Example: Generating a pattern

n = int(input("Enter the number of rows: "))

for i in range(n):

 for j in range(i+1):

 print("*", end="")

 print()

Output

Enter the number of rows: 5

*

**

String

String: String is a sequence of UNICODE characters. A string can be created by enclosing one or more

characters in single, double or triple quotes (' ' or '' '' or ''' ''').

Example

>>> str1 = 'Python'

>>> str2 = "Python"

>>> str3 = '''Multi Line

String'''

>>> str4 = """Multi Line

String"""

Terminology

Whitespace Characters: Those characters in a string that represent horizontal or vertical space.

Example: space (' '), tab ('\t'), and newline ('\n')

76

Indexing in Strings

● Indexing is used to access individual characters in a string using a numeric value.

● The index of the first character (from left) in the string is 0 and the last character is n-1

● The index can also be an expression including variables and operators but the expression must

evaluate to an integer

● Forward indexing, also known as positive indexing, starts from left to right, with the first character

having index 0, second character having index 1, and so on.

● Backward indexing, also known as negative indexing, starts from right to left, with the last character

having index -1, second-last character having index -2, and so on

.

Example

>>> str1 = 'Python'

>>> str1[0]

'P'

>>> str1 = 'Python'

>>> str1[2+3]

'n'

Slicing

Slicing is the process of extracting a substring from a given string. It is done using the operator ':'.

Syntax : string[start:end:step].

start : 'start' is the starting index of the substring (inclusive).

end : 'end' is the ending index of the substring (exclusive)

step : 'step' is the difference between the index of two consecutive elements. Default value is 1

Case-1

print(str1[:3])

Output

PYT

Case-2

print(str1[1:4])

Output

YTH

Case-3

print(str1[0:5:2])

Output

PTO

Case-4

print(str1[-5:-1])

Output

YTHO

Case-5

print(str1[-1:-4])

Output

''

Case-6

print(str1[:-5:-

1])

Output

NOHT

Case-7

print(str1[:-5])

Output

P

77

 Mutable Object

If the value of an object can be changed after it is created, It is called mutable object

Example

Lists, Set and dictionaries.

Immutable Object

If the value of an object cannot be changed after it is created, it is called immutable object

Example

Numeric, String and Tuple

String is Immutable

A string is an immutable data type. It means that the value (content) of a string object cannot be changed

after it has been created. An attempt to do this would lead to an error.

Example

>>> str1 = 'Python'

>>> str1[1]='Y'

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

Traversal of a String

Accessing the individual characters of string i.e. from first

1. Using only for Loop

str1 = 'Computer'

for ch in str1:

 print(ch, end=' ')

2. Using For Loop and range function

str1 = 'Computer'

for ch in range(0,len(str1)):

 print(str1[ch],end=' ')

3. Using while Loop

str1 = 'Computer'

i = 0

while i < len(str1):

 print(str1[i],end = ' ')

 i+= 1

78

String Operations

We can perform various operations on string such as concatenation, repetition, membership and slicing.

Concatenation

Operator : +

>>> str1 = "Python"

>>> str2 = "Programming"

>>> str1 + str2

'PythonProgramming'

Repetition

Use : To repeat the given string multiple times.

Repetition operator : *

>>> str1 = "Hello "

>>> str1*5

'Hello Hello Hello Hello Hello'

Membership

Membership is the process of checking whether a particular character or substring is present in a sequence

or not. It is done using the 'in' and 'not in' operators.

Example

>>> str1 = "Programming in Python"

>>> "Prog" in

str1

True

>>> "ming in"

in str1

True

>>> "Pyth " in

str1

False

>>> "Pyth "

not in str1

True

String Methods/Functions

Python has several built-in functions that allow us to work with strings

79

len()

Returns the length of the given string

>>> str1 = 'Hello World!'

>>> len(str1)

12

capitalize()

converts the first character of a string to capital

(uppercase) letter and rest in lowercase.

str1 = "python Programming for

11th"

str1.capitalize()

'Python programming for 11th'

title()

converts the first letter of every word in the string

in uppercase and rest in lowercase

>>> str1 = "python ProGramming

for 11th"

>>> str1.title()

'Python Programming For 11Th'

lower()

Returns the string with all uppercase letters

converted to lowercase

>>> str1 = "PYTHON PROGRAMMING for

11th"

>>> str1.lower()

'python programming for 11th'

upper()

Returns the string with all lowercase letters

converted to uppercase

>>> str1 = "python programming

for 11th"

>>> str1.upper()

'PYTHON PROGRAMMING FOR 11TH'

count()

Returns number of times a substring occurs in the

given string

>>> str1 = "python programming for

11th"

>>> str1.count("p")

2

>>> str1.count("pyth")

1

find()

Returns the index of the first occurrence of

substring in the given string. If the substring is

not found, it returns -1

>>> str1 = "python programming

for 11th"

>>> str1.find('r')

8

>>> str1.find('u')

-1

index()

Same as find() but raises an exception if the

substring is not present in the given string

>>> str1 = "python programming for

11th"

>>> str1.index('r')

8

>>> str1.index('u')

Traceback (most recent call last):

 File "<stdin>", line 1, in

<module>

ValueError: substring not found

80

isalnum()

The isalnum() method returns True if all

characters in the string are alphanumeric (either

alphabets or numbers). If not, it returns False.

>>> str1 = 'HelloWorld'

>>> str1.isalnum()

True

>>> str1 = 'HelloWorld2'

>>> str1.isalnum()

True

isalpha()

Returns True if all characters in the string are

alphabets, Otherwise, It returns False

>>> 'Python'.isalpha()

True

>>> 'Python 123'.isalpha()

False

isdigit()

returns True if all characters in the string are

digits, Otherwise, It returns False

>>> '1234'.isdigit()

True

>>> '123 567'.isdigit()

False

isspace()

Returns True if has characters and all of them are

white spaces (blank, tab, newline)

>>> str1 = ' \n \t'

>>> str1.isspace()

True

>>> str1 = 'Hello \n'

>>> str1.isspace()

False

islower()

returns True if the string has letters all of them

are in lower case and otherwise False.

>>> str1 = 'hello world!'

>>> str1.islower()

True

>>> str1 = 'hello 1234'

>>> str1.islower()

True

>>> str1 = 'hello ??'

 >>> str1.islower()

True

isupper()

returns True if the string has letters all of them are

in upper case and otherwise False.

>>> str1 = 'HELLO WORLD!'

>>> str1.isupper()

True

>>> str1 = 'HELLO 1234'

>>> str1.isupper()

True

>>> str1 = 'HELLO ??'

 >>> str1.isupper()

True

81

strip()

Returns the string after removing the whitespaces

both on the left and the right of the string

>>> str1 = ' Hello World! '

>>> str1.strip()

'Hello World!'

lstrip()

Returns the string after removing the whitespaces

only on the left of the string

>>> str1 = ' Hello World! '

>>> str1.lstrip()

'Hello World! '

rstrip()

Returns the string after removing the whitespaces

only on the right of the string

>>> str1 = ' Hello World! '

>>> str1.rstrip()

' Hello World!'

replace(oldstr,newstr)

used to replace a particular substring in a string

with another substring

>>> str1 = 'Hello World!'

>>> str1.replace('o','*')

'Hell* W*rld!'

partition()

The partition() function is used to split a string

into three parts based on a specified separator.

>>> str1 = 'India is a Great Country'

>>> str1.partition('is')

('India ', 'is', ' a Great Country')

>>> str1.partition('are')

('India is a Great Country',' ',' ')

split()

Returns a list of words delimited by the specified

substring. If no delimiter is given then words are

separated by space.

>>> str1 = 'India is a Great Country'

>>> str1.split()

['India','is','a','Great', 'Country']

>>> str1 = 'India is a Great Country'

>>> str1.split('a')

['Indi', ' is ', ' Gre', 't Country']

82

startswith()

startswith() function is used to check whether a

given string starts with a particular substring.

endswith()

endswith() function is used to check whether a

given string ends with a particular substring.

str = "Python Programming

Language"

print(str.startswith("Pyt"))

print(str.startswith("Pyth"))

print(str.endswith("age"))

print(str.endswith("uage"))

print(str.startswith("Pyts"))

Output

True

True

True

True

False

join()

str.join(sequence)

returns a string in which the string elements of

sequence have been joined by str separator. if few

of the members of the sequence are not string, error

is generated.

>>> '*-*'.join('Python')

'P*-*y*-*t*-*h*-*o*-*n'

>>> '*-

*'.join(['Ajay','Abhay','Alok'])

'Ajay*-*Abhay*-*Alok'

>>> '*-

*'.join(['Ajay','Abhay',123])

Traceback (most recent call last):

 File "<stdin>", line 1, in

<module>

TypeError: sequence item 2:

expected str instance, int found

