

65

● Parenthesis Mismatch

● Misspelled keyword

● Incorrect Indentation

Logical Error

Logical errors occur when the code runs without any errors, but the output is not as expected. Logical errors

are caused by a problem in the logic of the code.

Example : Average = mark_1 + mark_2 / 2 # incorrect calculation of average marks

Corrected Code : Average = (mark_1 + mark_2) / 2

Runtime Error

A runtime error causes abnormal termination of the program during the execution. Runtime error occurs

when the statement is correct syntactically, but the interpreter cannot execute it.

Example: 'division by zero'

num1 = 5.0

num2 = int(input("num2 = ")) #if the user inputs zero, a runtime error

will occur

print(num1/num2)

Flow of Control

Flow of Control refers to the order in which statements are executed in a program.

Sequential Flow

The default control flow in a program is sequential flow, in which statements are executed line-by-line one

after the other in a sequence in which they are written.

Example

x = 6

y = 7

z = y - x

print(z)

66

Conditional Flow

Conditional flow refers to execution of certain statements only if a specific condition is met. This is

accomplished by the use of conditional statements such as if, if-else, and if-elif-else.

Example

num = int(input("Enter a number : "))

if(num>5):

 print("Number is greater than 5")

else:

 print("Number is less than 5")

Output

Enter a number : 55

Number is greater than 5

Iterative Flow

Iteration means 'repetition'.

Iterative flow repeats statements in a block of code. Repetition or looping can be performed a fixed number

of times or until a certain condition is met. This is accomplished through the use of iterative statements: for

and while.

Example-1

name = input("Enter your name : ")

for x in range(5): # range function creates a sequence of integers from 0 to 4

 print("Hello", name)

Example-2

name = input("Enter your name : ")

i=1

while i<=5:

 print("Hello", name)

 i +=1

67

Conditional Statements

Conditional statements execute specific blocks of code based on certain conditions. In Python, conditional

statements are implemented using the keywords if, if-else, and if-elif-else.

Terminology

Indentation

Indentation refers to the spaces at the beginning of a line.

Example

if a<5:

 print(a)

 print('Inner Block')

print('Outside block')

Block of code

A block of code is a set of statements that are grouped together and executed as a single unit. A block of

code is identified by the indentation of the lines of code.

if statement
The if statement is used to execute a block

of code only if a certain condition is true.

Syntax:

if <condition>:

 Set of Statements

Flow Chart of if-statement

Example-

age = int(input("Enter your age : "))

if age>=18:

 print('Congratulations')

 print('You are allowed to vote')

68

Program

Write a python Program to find the absolute value of the number entered by the user.

num = int(input("Enter any number : "))

if num>=0:

 abs_num = num

else:

 abs_num= -num

print(abs_num)

Output

Enter any number : -5

5

Program

Write a python Program to sort three numbers entered by a user.

a = float(input("Enter the first number : "))

b = float(input("Enter the second number : "))

c = float(input("Enter the third number : "))

if a > b:

 a,b = b,a

if a > c:

 a,c = c,a

if b > c:

 b,c = c,b

print (a, "<", b, "<", c)

Output

Enter the first number : 30

Enter the second number : 25

Enter the third number : 20

20.0 < 25.0 < 30.0

if-else statement

The if-else statement is used to execute one block of code if a certain condition is true, and another block

of code if the condition is false.

69

Syntax of if-else

if <condition>:

 set of statements

else:

 set of statements

Example

age = int(input("Enter your age : "))

if age>=18:
 print('Congratulations')

 print('You are allowed to vote')

else:

 print('You are not allowed to vote')
print('Thanks')

Flowchart of if-else statement

70

Program

Write a python Program to check if a number entered by a user is divisible by 3.

num=int(input("Enter a number : "))

if num % 3 == 0:

 print(num,"is divisible by 3")

else:

 print(num,"is not divisible by 3")

Output

Enter a number : 601

601 is not divisible by 3

if-elif-else statement

if-elif-else statement is used to check multiple conditions.

Program

per = int(input("Enter Percentage : "))

if per >= 75:
 print("Distinction")

elif per >= 60:

 print("Grade-A")

elif per >= 50:

 print("Grade-B")

elif per >= 40:
 print("Grade-C")

else:

 print("Grade-D")

Flowchart of if-elif-else statement

71

Iterative Statement

Iterative statements execute a set of instructions multiple times. 'for' and 'while' loops are the iterative

statements in Python.

while Loop

The while loop repeatedly executes a block of code as long as the specified condition is true.

The while loop is an exit controlled loop, i.e. the user is responsible for exiting the loop by changing the

value of the condition to False. While loop may run infinitely if the condition remains true.

Syntax:

while (condition):

 block of statements

Flowchart of while loop

Example

Write a Python Program (using a while loop) to Find the Sum of First 10 Natural Numbers.

num=1

sum=0

while (num <= 10):

 sum = sum + num

 num = num+1

print ("Sum of Natural Numbers : ", sum)

Example

Write a Python Program (using the while loop) to Find the Sum of First N Natural Numbers where N is

entered by the user.

num=1

sum=0

n = int(input("Enter the value of n : "))

while (num <= n):

 sum = sum + num

 num = num+1

print ("Sum of Natural Numbers : ", sum)

72

range() Function

range() is a built-in function that returns a sequence of numbers.

Syntax

range(start, stop, step)

start: The starting value of the sequence (inclusive). If not specified, it defaults to 0.

stop: The ending value of the sequence (exclusive).

step: The difference between two consecutive elements. Its default value is 1.

The range() function can be used in for loops to iterate over a sequence of numbers.

Case-1

x = list(range(5))

print(x)

Output

[0, 1, 2, 3, 4]

Case-2

x = list(range(3,6))

print(x)

Output

[3, 4, 5]

Case-3

x = list(range(3,20,2))

print(x)

Output

[3, 5, 7, 9, 11, 13, 15, 17,

19]

Case-4

x = list(range(0, -9, -1))

print(x)

Output

[0, -1, -2, -3, -4, -5, -6, -7, -

8]

for Loop

The for loop is used to iterate over a sequence (such as a list, tuple, string, etc.) and execute a block of code

for each item in the sequence.

Syntax

for <control_variable> in <sequence>:

 Block of code

Flowchart of for loop

73

Example-1

list1 = [1,2,3,4,5,6,7,8,9,10]

for var1 in list1:

 print(var1)

Example-2

str1 = 'India'

for each_character in str1:

 print(each_character)

Program-1

Write a Python Program (using for loop) to Find the Sum of First 10 Natural Numbers.

sum=0

for num in range(1,11):

 sum = sum + num

print ("Sum of Natural Numbers : ", sum)

Output:

Sum of Natural Numbers : 55

Program-2

Write a Python Program (using for loop) to Find the Sum of First N Natural Numbers where N is entered by the

user.

sum=0

n = int(input("Enter the value of n : "))

for num in range(1, n+1):

 sum = sum + num

print ("Sum of Natural Numbers : ", sum)

Output:

Enter the value of n : 20

Sum of Natural Numbers : 210

Program-3

Write a Python Program (using for loop) to find the factorial of a number.

num = int(input("Enter a number: "))

factorial = 1

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

else:

 for i in range(1, num + 1):

factorial *= i

print("The factorial of", num, "is", factorial)

Output

Enter a number: 5

The factorial of 5 is 120

74

Break and Continue Statement

Break Statement: The break statement is used to terminate a loop immediately. It is typically used with

conditional statements.

Continue Statement: The continue statement skips all the remaining statements in the current iteration of

the loop and moves the control to the beginning of the next iteration.

Example :

fruits = ['apple', 'banana', 'cherry']

for x in fruits:

 if x == 'banana':

 break

 print(x)

Example :

Write a program in Python to check if a number entered by a user is a prime number or not.

num = int(input("Enter a number: "))

flag=False

if num > 1:

 for i in range(2, num):

 if (num % i) == 0:

 flag=True

 break

 if flag==True:

 print(num, "is not a prime number")

 else:

 print(num, "is a prime number")

Example :

Write a program in Python to print all natural numbers from 1 to 10 except 7.

for i in range(1,11):

 if i==7:

 continue

 print(i)

Example :

Write a program in Python to print all natural numbers between 1 and 50 (both inclusive) which are not

multiple of 3.

for x in range(1, 51):

 if x % 3 ==0 :

 continue

 print(x)

75

Nested loops

Nested loops refers to a loop within a loop.

Example: Generating a pattern

n = int(input("Enter the number of rows: "))

for i in range(n):

 for j in range(i+1):

 print("*", end="")

 print()

Output

Enter the number of rows: 5

*

**

String

String: String is a sequence of UNICODE characters. A string can be created by enclosing one or more

characters in single, double or triple quotes (' ' or '' '' or ''' ''').

Example

>>> str1 = 'Python'

>>> str2 = "Python"

>>> str3 = '''Multi Line

String'''

>>> str4 = """Multi Line

String"""

Terminology

Whitespace Characters: Those characters in a string that represent horizontal or vertical space.

Example: space (' '), tab ('\t'), and newline ('\n')

