lopics to be covered

. Intvoduction

- lypes of evions
- Handling Exceptions Using Tuy —Except—Finally Blocks

o
0
4

I41uy.

uo;.

EXCEPTION HANDLING

While executing a Python program, it may happen that the program does not execute at all or it can
generate unexpected output. This happens when there are syntax errors, run time errors, logical
errors or any semantic errors in the code.

SYNTAX ERROR

It occurs when we put some
incorrect punctuation,
incorrect word sequence or
there are some undefined
terms or missing parenthesis.
Syntax errors are also known
as Parsing errors.

For example:

>>> p=2(numl+num?2)

This statement is
mathematically correct but
the Python interpreter will
raise a SYNTAX error as there
is no sign present between 2
and parenthesis. The correct
statement will be:

>>> p=2*(numl+num?2)

LOGICAL ERROR

It may occur when there may be some
improper sequence of statements or
incorrect use of operators. It will not
stop a program from executing but will
produce incorrect output. It will
generate incorrect output for every
value of input.

For example:

If we want to find the sum of two
numbers, write the following code:
A,B=10,15

C=A*B

print (“Sum is: “, C)

Here, the code will generate A * B but
we wanted to find Sum. Hence it is a
logical error.

RUN TIME ERROR

It occurs at the time of program
execution. Such errors produce
incorrect output for specific
values of input. These errors are
also called Exceptions, which
occur when something
unexpected happens leading to
stopping the program
execution.
For example:
1. Division by zero.
2.Finding the square root of a
negative number.
3.Insufficient memory is
available on the computer.
4.Trying to open a file that does
not exist.

EXCEPTIONS:

® Run time errors are known as Exceptions.

® When an Exception is generated, the program execution is stopped.
® Removing errors from a code is referred to as EXCEPTION HANDLING.

® Commonly occurring exceptions are usually defined in the Interpreter. These are known as Built-in

Exceptions.

Some Built-in Exceptions are listed below:

EXCEPTION

DESCRIPTION

ZeroDivisionError

It is raised when an expression or a value is getting divided by zero (0).
For example: If c = 0, then p = b/c will result in ‘ZeroDivisionError’.

Nametrror It is raised when an identifier is not assigned any value earlier and is
being used in some expression. For example: if p = a*b/c then it will
result in ‘NameError’ when one or more variables are not assigned
values.

TypeError It is raised when variables used in any expression have values of
different data types. For example: if p=(a+b)/c then it will result in
‘TypeError’ when the variables a, b and c are of different data types.

ValueError It is raised when the given value of a variable is of the right data type
but not appropriate according to the expression.

IOError N) e s

It is raised when the file specified in a program statement cannot be
opened.

IndexError It is raised when the index of a sequence is out of the range.

KeyError It is raised when a key doesn’t exist or is not found in a dictionary.

EXCEPTION HANDLING:

Every exception has to be handled by the programmer for the successful execution of the program.
To ensure this we write some additional code to give some proper message to the user if such a
condition occurs. This process is known as EXCEPTION HANDLING.

Exception handlers separate the main logic of the program from the error detection and correction
code. The segment of code where there is any possibility of error or exception is placed inside one
block. The code to be executed in case the exception has occurred is placed inside another block.

These statements for detection and reporting the execution do not affect the main logic of the

program.

STEPS FOR EXCEPTION HANDLING:

EXCEPTION

SUCCESSFUL PROGRAM
RAISED?

EXCEPTION FALSE

HANDLER
FOUND?

PROGRAM EXECUTION

PROGRAM WILL NOW BE

An exception is said to be caught when a code designed for handling that particular exception is
executed. In Python, exceptions, if any, are handled by using the try-except-finally block. While
writing code, a programmer might doubt a particular part of code to raise an exception. Such
suspicious lines of code are written inside a try block which will be followed by an except block. The

code to handle every possible exception, that may arise in the try block, will be written inside the
except block.

If no exception occurs during the execution of the program, the program produces the desired
output successfully. But if an exception is encountered, further execution of the code inside the try
block will be stopped and the control flow will be transferred to the except block.

Example 1:

nl = int(input("Enter first number: "))
n2 = int(input("Enter second number: "))
try:

result = nl / n2

print("Division result is: ", result)

except ZeroDivisionError:
print("Denominator is Zero!! Division not possible.")

The output will be:

============ RESTART: C:/Users/my lapi/Desktop/exception example.py
Enter first number: 12

Enter second number: 2

Division result is: 6.0

============ RESTART: C:/Users/my lapi/Desktop/exception example.py =====
Enter first number: 12

Enter second number: 0

Denominator is Zero!! Division not possible.

Example 2:

a=int (input ("enter a value")) # here user should enter an integer
enter a valueq
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
a=int (input ("enter a value")) # here user should enter an integer
YalueError: invalid literal for int() with base 10: 'g'

In the above example, the user entered a wrong value that raised ValueError. We can handle this
exception by using the ValueError exception.

a=int (input ("enter a value")) # here user should enter an integer
)

the user may enter any value which cant be typecasted to integer.
in that case a value error exception will be raised. We can handle that exception

print (a)
except ValueError:
print ("enter only integers")

Result:

enter a valueq
enter only integers
I

Use of multiple “except” blocks:

Sometimes, a single piece of code in a program may have more than one type of error. If such an
event happens, we can use multiple except blocks for a single try block.

Example 1:
Yy :
nl = int(input("Enter first number: "))
n2 = int(input ("Enter second number: "))
result = nl1 / n2
print("Division result is: ", result)

except ZeroDivisionError:
print ("Denominator is Zero!! Division not possible.")

except ValueError:
print ("Kindly enter only Integer Values.")

The output will be:

Enter first number: 25
Enter second number: a
Kindly enter only Integer Values.

Example 2:

ct
Lo}
=

file = open("nonexistent file.txt", "r")
data = file.read()
file.close()
num = int (data)
result = 10 / num
print ("Result:", result)
except FileNotFoundError:
print ("Error: File not found.")
xcept ZeroDivisionError:
print ("Error: Cannot divide by zero.")
except ValueError:

print ("Error: Invalid data. Please make sure the file contains a valid number.")

i)

We can also handle exceptions without naming them.

#handling exceptions without naming them.
try:
nl = int(input ("Enter first number: "))
n2 = int(input("Enter second number: "))
result = n1 / n2
print("Division result is: ", result)

except ValueError:
print ("Kindly enter only Integer Values.")

except:
print("oops!! There are some Exceptions.")

The output will be:

Enter first number: 56
Enter second number: 0
oops!! There are some Exceptions.

Default exception messages can also be displayed when we are not handling exceptions by name.

nl = int(input("Enter first number: "))

n2 = int(input("Enter second number: "))

result = nl1 / n2

print("Division operation performed")
except ValueError:

print ("Kindly enter only Integer Values.")
except Exception as e:

print ("There is an Exception, ", str(e))
else:

print("Division result is: ", result)
finally:

print ("Have a good day!!")

The output will be:

Enter first number: 12

Enter second number: 0

There is an Exception, division by zero
Have a good day!!

try...except...else Clause: Just like Conditional and Iterative statements we can use an optional
else clause along with the try...except clause. An except block will be executed only when some
exceptions are raised in the try block. But if there is no error then except blocks will not be executed. In
this case, the else clause will be executed.

try:
nl = int(input("Enter first number: "))
n2 = int(input("Enter second number: "))
result = nl1 / n2
print("Division operation performed")
except ValueError:
print ("Kindly enter only Integer Values.")

except:

print("oops!! There are some Exceptions.")
else:

print("Division result is: ", result)

The output will be:

Enter first number: 12
Enter second number: 2
Division operation performed
Division result is: 6.0

finally CLAUSE:

The try...except...else block in Python has an optional finally clause. The statements inside the finally
block are always executed whether an exception has occurred in the try block or not. If we want to
use the finally block, it should always be placed at the end of the clause i.e. after all except blocks
and the else block.

try:

nl = int(input("Enter first number: "))

n2 = int(input("Enter second number: "))

result = nl1 / n2

print("Division operation performed")
except ValueError:

print ("Kindly enter only Integer Values.")
except:

print("oops!! There are some Exceptions.")
else:

print("Division result is: ", result)
finally:

print ("Have a good day!!")

The output will be:

Enter first number: 12

Enter Second number: 2
Division operation performed.
Have a good day.

