"lopics to be covered

o Intwoduction

o Create Usen Usen-defined Function
o Avwguments And Pavameters

° DM Panaumeters

o Positional Pawwuneters

o Flow of Execution

2(QUUDAD 40 2d0os

Sjuaunbay
Josadh|

25

Function
Reusable block of code that performs a specific task. For example: len(), print(), min(), max(), sorted

(), type() etc.

Types of Functions

User defined

Defining a function in Python:

Name the function and specify what to do when the function is called. Python interpreter ignores the
function definition until the function is called.

Calling a function:

Calling the function performs the specified actions with the indicated parameters

Function Definition in Python

In Python, a function is defined using the def keyword

def my_function():
print(“"Hello from a function")

my_function()

® Arguments: Information can be passed into functions as arguments. Arguments are specified
after the function name, inside the parentheses. You can add as many arguments as you
want, just separate them with a comma.

® Actual Parameters (Arguments) are values supplied to the function when it is invoked/called

® Formal Parameters are variables specified in function definitions to receive values from
arguments passed during function calls.

Example 1:

Observe the following code:

def functionl (x):# Function Definition

print (x)
functionl ("first call to function") # calling function
functionl ("second call to function")#calling function

Output:

first call to function
second call to function

In the above example, a user-defined function “function1” has been defined that receives one
argument. Once the function is defined, it can be called any number of times with different
arguments.

Formal argument: x

Actual argument:

“first call to function “ passed in the first call
“second call to function” passed in the second call

Example 2: Write a function ADD(A, B) that receives two integer arguments and prints their sum.

def ADD(A,B): # function definition
print (A+B)

ADD(7,9) # function call

ADD(10,15) #function call

ADD(20,25) #function call

Output:

16
25
45

return keyword:

In Python, the ‘return’ keyword is used in functions to specify the value that the function will
return when it is called. When a function is executed, it may perform some computations or
operations, and the result can be sent back to the caller using the ‘return’ statement.

The basic syntax for using the ‘return’ statement is as follows:

def my function(arguments):
Code inside the function

1 value to be returned

Here's what you need to know about the ‘return” statement:

1. Returning a Value:
When you want to return a specific value from the function, you can use the ‘return’
statement followed by the value you want to return.

Note: The function will stop executing immediately after the ‘return” statement is
encountered, and the value will be passed back to the caller.

def add(a, b):
return a + b

result = add(5, 3) # The function returns 8, and the value is assigned to the "result" variable.
|

2. Returning Multiple Values:
Python allows you to return multiple values from a function as a tuple. You can
simply separate the values with commas after the ‘return’ statement.

d;fiéét_coérainatéé():

x = 10
y = 20
return x, y

x_coord, y coord = get coordinates()

The

unpacked in
L2 fn

(10, 20), and the values are
x_coord" and "y coord" varia

3. Returning None:
If a function doesn't have a ‘return’ statement or has a ‘return’ statement without any value,
it implicitly returns "None".

"None' is a special constant in Python that represents the absence of a value.

i;?maagggiething():
print ("Doing something...")

result = do_something()
print (result) # This will print "None".

4. Early Exit with Return:
You can use the ‘return” statement to exit a function early if certain conditions are
met. This is useful when you want to terminate the function before reaching the end.

def divide(a, b):
if b == 0:
== P

irn "Cannot divide by zero!

/ b

recurn a

resultl = divide (10, 2) # Returns 5.0
result2 divide (10, 0) # Returns "Cannot divide by zero!"
|

The ‘return” statement is a powerful tool that enables functions to produce results
and pass data back to the calling code. Understanding how to use it correctly will
help you design and implement effective functions in Python.

Scope of a variable:

In Python, the scope of a variable refers to the region of the program where the variable is
accessible. The scope determines where a variable is created, modified, and used.

Global Scope:

® Variables defined outside of any function or block have a global scope.

® They are accessible from anywhere in the code, including inside functions.

x = 10 # Global wvariable

def func():
print (x) # Accessing the global variable inside the function

def funcl():
print (x) #Accessing the global variable inside the function

func () # Output: 10
funcl () # Output:10

Local Scope:

® Variables defined inside a function have a local scope.

® They are accessible only within the function where they are defined.

® |ocal variables are created when the function is called and destroyed when the function returns.

def func():
y =5 # Local variable
print (y)

func() # Output: 5

y is not accessible outside the function
print(y) will result in an error
I

Points to be noted:

® When the local variable and global variable have different names: the global variable can be
accessed inside the function

a=10 #global variable

def fun():
x=20 #local variable
y=x+a # global copy of variable a is accessed
returh y

print (fun()) # 30

® When local and global variables have the same name: priority is given to the local copy of the
variable

a=10 #global variable
def fun():
a=20 #local variable
y=20+a # local copy of variable a is accessed

return

rm y
print (fun()) # 40

global keyword

In Python, the global keyword is used to indicate that a variable declared inside a function
should be treated as a global variable, rather than a local variable. When you assign a value to
a variable inside a function, Python, by default, creates a local variable within that function's
scope. However, if you need to modify a global variable within a function, you must use the
global keyword to specify that you want to work with the global variable instead.

Here's the basic syntax for using the global keyword:

glcobal wvariable name
For example:

global var = 10

def modify global():
global global var
global var = 20# global copy of variable will be modified

modify global()
print (global var) # Output will be 20

The lifetime of a variable:

The lifetime of a variable in Python depends on its scope. Global variables persist throughout
the program's execution, whereas, local variables within functions exist only during the
function's execution.

Study the following programs:

Example 1:

g=10

def

0 # global variable

£l
'''any changes made to local copy ofvariable g will
not be refelcetd on global copy of variable g'''

g=200# local copy of g will ve created, acccessible only in fl()
g=g+10 # local g will be updated
print(qg)

print(g) # global g is accessible

£1()

print(g) # global variable is accessible

Example 2:

var=40 # global var created that is visible througout the program

def

def

funl():

var=20 #local copy of var is created

var+=1 # local copy of var is increased by 1
print(varﬂ

fun2 () :

print (var) #global copy of var will be increased

print (var)# 40
funl () # 21
print (var) # 40
fun2 () # 40
print (var) #40

Example 3:
var=40 #global var created that is visible throughout the program
def funl():
var=20 #local copy of var is created
var+=1 #local copy of var is increased by 1
print (var)
def fun2():
var+=1 """it will generate error b/c you need to use 'global' keyword
if you want to make any change in global variable"""
print (var)
print (var) #40
funl () #21
print (var) #40
fun2 () #41

pri

nt (var) #41

Example 4:

var=40 #global var created that is visible throughout the program

def funl():
var=20 #local copy of var is created
var+=1 #local copy of var is increased by 1
print (var)

def fun2():
global var #global copy of var is accessed
var+=1 #global copy of var is increased by 1
print (var)

print(var) #40

funl () #21
print(var) #40
fun2 () #41

print(var) #41

Passing list as an argument to the function:

Please note that when a list is passed as an argument, the original copy of the list is passed to
the function i.e. if any change is made at any index in the list inside the function, it is reflected
in the original list. That is because a list is a mutable datatype and in Python, when you pass a
list as an argument to a function, you are actually passing a reference to the list rather than a
copy of the list. This means that the function parameter will point to the same memory
location as the original list. As a result, any changes made to the list within the function will be
reflected in the original list outside the function.

def modify list(some list):
some_ list.append(4)
some_list([0] = "modified"

my list = [1, 2, 3]
modify list(my list)

print (my list) # Output: ['modified', 2, 3, 4]

However, if you assign a different list to a variable inside a function in Python, it will create a
new local variable that is separate from any variables outside the function. This local variable
will only exist within the scope of the function, and changes made to it won't affect the
original list outside the function.

def modify list(some list):
some list = [10, 20, 30] # Assign a new list to the local variable
print ("Inside the function:", some list)

my list = [1, 2, 3]
modify list(my list)

print ("Outside the function:", my list)

Output:
Inside the function: [10, 20, 30]
Outside the function: [1, 2, 3]

Types of arguments passed to a function:

Positional Arguments:

® These are the most common types of arguments and are matched to the function
parameters based on their positions. The first argument corresponds to the first parameter,
the second argument corresponds to the second parameter, and so on.

® The number and order of positional arguments must match the function's parameter list.

def add(a, b):
return a + b

result = add(2, 3) # Here, 2 and 3 are positional arguments.

Default Arguments:

® Default arguments are used when a function is called with fewer arguments than there are
parameters.

® The default values are specified in the function definition.

e Ifavalueis not provided for a parameter during the function call, the default value is used.
def power (base, exponent=2):

return base ** exponent

resultl = power(3) # Using the default exponent (2)
result2 power (3, 4) # Providing a specific exponent (4)

Keyword Arguments:

® In this type, each argument is preceded by a keyword (parameter name) followed by an
equal sign.

® The order of keyword arguments does not matter, as they are matched to the function
parameters based on their names.

® These arguments provide flexibility to call a function with arguments passed in any order.

def add(a, b, c=0):
return a + b + ¢

resultl = add(1l, 2)
result2 = add(a=1, b=2, c=3)
result3=add(b=10,a=2) # default value of c will be used

print (resultl) # Output: 3
print (result2) # Output: 6
print (result3) #output :lﬂ

Python modules:

In Python, a module is a file containing Python code that defines variables, functions, and
classes.

Modules allow you to organize and reuse code by breaking it into separate files, making it
easier to maintain and understand complex programs.

Python's standard library comes with a vast collection of built-in modules that cover various
functionalities

If needed, you can also create your own custom modules.

To use a module in your Python code, you need to import it using the import statement.
math module:

The math module in Python is a built-in module that provides various mathematical
functions and constants.

It is part of the Python Standard Library i.e. it does not require any additional installation to
use.

To use the math module, you need to import it at the beginning of your Python script.
import math

Once you've imported the module, you can access its functions and constants using the math
prefix.
Here are some commonly used functions and constants provided by the math module:

Mathematical Constants:

math.pi: Represents the mathematical constant it (pi).
math.e: Represents the mathematical constant e (Euler's number).

Basic Mathematical functions :

math.sqrt(x): Returns the square root of x.

math.pow(x, y): Returns x raised to the powery.

math.exp(x): Returns the exponential of x (e”x).

math.log(x, base): Returns the logarithm of x to the specified base (default base is e).
Trigonometric Functions (all angles are in radians):

math.sin(x), math.cos(x), math.tan(x): Sine, cosine, and tangent of x, respectively.

math.asin(x), math.acos(x), math.atan(x): Arcsine, arccosine, and arctangent
of x, respectively.

Hyperbolic Functions:

math.sinh(x), math.cosh(x), math.tanh(x): Hyperbolic sine, cosine, and tangent of x,
respectively. Angular Conversion:

math.degrees(x): Converts x from radians to degrees.

math.radians(x): Converts x from degrees to radians. Miscellaneous:

math.ceil(x): Returns the smallest integer greater than or equal to x.

math.floor(x): Returns the largest integer less than or equal to x.

math.factorial(x): Returns the factorial of x.

Study the following examples:

Example 1:

Example 2:

Example 3:

import math

print (math.sqrt (25)) # Output: 5.0
print (math.sin(math.pi/2)) # Output: 1.0
print (math.degrees (math.atan(l))) # Output: 45.0 (angle in degrees)

x = 3.7
rounded up = math.ceil (x)
rounded down = math.floor (x)

print ("Rounded up:", rounded up) # Output: 4
print ("Rounded down:", rounded down) # Output: 3

import math

print ("Value of n (pi):", math.pi) # Output: 3.141592653589793
print ("Value of e (Euler's number):", math.e) # Output: 2.718281828459045

Statistics module:

® The statisticc module in Python is another built-in module that provides functions for
working with statistical data.

® |t offers a variety of statistical functions to compute measures like mean, median, standard
deviation, variance, etc.

® The statistics module is part of the Python Standard Library, so there's no need to install any
additional packages to use it.

Here are some commonly used functions provided by the statistics module:

® statistics.mean(data): Calculates the arithmetic mean (average) of the data.

® statistics.median(data): Computes the median value of the data.

® statistics.mode(data): Finds the mode (most common value) in the data.

Example 1:

import statistics
data = [2, 4, 6, 8, 10]

median high = statistics.median high(data)
median low = statistics.median low(data)

print ("Median High:", median_high) # Output: 6
print ("Median Low:", median low) # Output: 6

Example 2:

import statisticﬂ
data = [23 3; 34y 44y 525; 53 5]

mean value = statistics.mean(data)
node value = statistics.mode(data)

print("Mean:", mean value) # Output: 4.0

random module

print("Mode:", mode value) # Output: 5 (Note: 5 is the most common value, it appears 4 times)

® The random module in Python is another built-in module that provides functions for

generating random numbers, and sequences, and making random choices.

® |t is commonly used for tasks such as random number generation, random shuffling, and

random sampling.

import random

Here are some commonly used functions provided by the random module:

® random.random(): Generates a random float number in the range [0.0, 1.0). e

random.uniform(a, b): Generates a random float number in the range [a, b).

® random.randint(a, b): Generates a random integer in the range [a, b] (inclusive).

e random.choice(sequence): Picks a random element from a sequence (list, tuple, string, etc.).

o random.shuffle(sequence): Shuffles the elements of a sequence randomly
(in-place).

Example 1:

What is the possible outcome/s of the following code?

import random
colors = ['red', 'green', 'blue', 'yellow', 'purple',
random_sample = random.randint(3,5)

print (colors[random sample])

Possible options:

a) green
b) yellow
c) blue

d) orange

'orange']

Solution:

Here, the possible values for the variable random sample are 3, 4 and 5. Hence, the
possible Outputs of the above code are b) Yellow and d) orange.

Example 2:

Code:

import random

Generate a random float between 0 and 1
random float = random.random/()
print ("Random float between 0 and 1: ", random float)

Generate a random float between a and b

a=>5

b =10

random_uniform = random.uniform(a, b)

print ("Random float between ",a," and ",b, " : ", random_unifon

Generate a random integer between a and b (inclusive)

a=1

b=2¢6

random_int = random.randint(a, b)

print ("Random integer between ", a, " and ",b," : ",random int)

Generate a random element from a list
fruits = ["apple", "banana", "cherry"]
random fruit = random.choice (fruits)
print ("Random fruit: ",random fruit)

Shuffle a list

colors = ["red", "green", "blue", "yellow"]
random.shuffle (colors)

print ("Shuffled colors: ", colors)

Output:

Random float between 0 and 1: 0.14799122104768725
Random float between 5 and 10 : 6.5708962798366475
Random integer between 1 and 6 : 3

Random fruit: cherry

Shuffled colors: ['red', 'blue', 'yellow', 'green']

Example 3:

What are the possible output/s for the following code?

import random
low=25
point =5
for i in range (1,5):
Number=low + random.randint (0,point)

print (Number,end=" : ")
point-=1;
print ()

Output Options:

i. 29:26:25:28: ii.24:28:25:26:

iii.29:26:24:28: iv.29:26:25:26:
Solution:

Option iv
Example 4:

What are the possible outcome/s for the following code:

import random
LIMIT = 4
Points = 100 +random.randint (0, LIMIT) ;
for p in range(Points,99,-1):
print (p,end="#")
print ()
Output Options:
i. 103#102#101#100# ii. 100#101#102#103#
iii. 100#101#102#103#104# iv. 4#103#102#101#100#

Solution:

Option i and option iv

Assignment
1. What will be the output of the following code?

a=10
def call():
global a
b=20
a=a+b
print {a)
eall:f)
a) 10 b) 30 c) error d) 20

2. What is the scope of a variable defined inside a function?
a) Global scope b)Local scope c)Universal scope d)Function scope

3. In Python, can a function return multiple values simultaneously?
a) Yes b) No

4. What is the purpose of the "return" statement in a function?
a) It specifies the type of the function.
b) It defines the input parameters of the function.
c) Itindicates the end of a function.
d) [Itreturns avalue from the function to the caller.

5. Which of the following module functions generates an integer?

a) randint() b) uniform() c¢) random() d) all of the above
6. The return type of the input() function is

a) String b) integer c) list d) tuple

