BIOMOLECULES

- > Biomolecules are complex organic molecules which forms the basis of life.
- > The biomolecules associated with living systems are carbohydrates, proteins, enzymes, lipids, hormones etc.

CARBOHYDRATES

- > Carbohydrates are a group of naturally occurring organic compounds.
- > They contain carbon, hydrogen and oxygen.
- Hydrogen and oxygen are present in the ratio 2:1.
- \triangleright They have the general formula $C_x(H_2O)_y$.
- ➤ They are synthesized by green plants from CO₂ and H₂O in the presence of sunlight by a process called photosynthesis.
- > Carbohydrates are optically active polyhydroxy aldehydes or ketones or large polymeric substances that can be hydrolysed to polyhydroxy aldehydes or ketones.

CLASSIFICATION OF CARBOHYDRATES

> Carbohydrates are classified on the basis of their behaviour on hydrolysis.

MONOSACCHARIDES

- These carbohydrates contain a single carbohydrate unit.
- > It cannot be hydrolysed further to give asimpler unit of polyhydroxy aldehydes or ketone.
- > Eg: Glucose, Fructose, Ribose etc.

OLIGOSACCHARIDES

- > Carbohydrates which yield two to ten monosaccharide units on hydrolysis are called oligosaccharides.
- > They are further classified as disaccharides, trisaccharides, tetrasaccharides etc. depending upon the number of monosaccharides they provide on hydrolysis.
- > Eg: Sucrose, Lactose etc.

POLYSACCHARIDES

- Carbohydrates which yield a large number of monosaccharide units on hydrolysis are called polysaccharides
- Eg: Starch, Cellulose, Glycogen etc.
- The Carbohydrates may also be classified as either reducing or non reducing sugars.

REDUCING SUGARS

- Carbohydrates which reduce Fehling's solution and Tollen's reagent are referred to as reducing sugars.
- > All monosaccharides are reducing sugars.

NON REDUCING SUGARS

Carbohydrates which do not have a free aldehyde or ketone are called Non-Reducing Sugars.

- In disaccharides, the reducing groups of monosaccharides i.e., aldehydic or ketonic groups are bonded.
- > Hence these are non-reducing sugars.
- ➤ Eg: Sucrose.

MONOSACCHARIDES

- Monosaccharides, are further classified on the basis of number of carbon atoms and the functional group present in them.
- > If a monosaccharide contains an aldehydic group, it is known as an aldose.
- > If a monosaccharide contains a keto group, it is known as a ketose.

GLUCOSE

- > Glucose occurs freely in nature as well as in the combined form.
- It is present in sweet fruits and honey.
- Ripe grapes also contain glucose in large amounts.

PREPARATION

> In the laboratory, glucose is prepared by the hydrolysis of an alcoholic solution of sucrose by boiling with dilute Hydrochloric acid or dilute Sulphuric acid.

$$C_{12}H_{22}O_{11} + H_{2}O \xrightarrow{H^{+}} C_{6}H_{12}O_{6} + C_{6}H_{12}O_{6}$$

➤ Commercially glucose is obtained by the hydrolysis of starch by boiling it with dilute H₂SO₄ at 393K under pressure.

$$C_6H_{10}O_5 + nH_2O \xrightarrow{H^+/393 \text{ K}} nC_6H_{12}O_6$$

STRUCTURE OF GLUCOSE

CYCLIC STRUCTURE OF GLUCOSE

PHYSICAL PROPERTIES

- > Glucose is a colourless crystalline solid.
- > It has a sweet taste.
- > It is readily soluble in water.
- It is sparingly soluble in alcohol and insoluble in ether.

CHEMICAL PROPERTIES

1. Oxidation

> Mild oxidising agents like bromine water oxidize glucose to gluconic acid.

$$CH_2OH(CHOH)_4CHO$$
 $\xrightarrow{Br_2}$ $CH_2OH(CHOH)_4COOH$

➤ Strong oxidising agents like HNO₃ oxidize glucose to saccharic acid.

$$CH_2OH(CHOH)_4CHO \xrightarrow{HNO_3} HOOC(CHOH)_4COOH$$

2. Reducing Property

> Glucose reduces Fehling's solution to a red precipitate of cuprous oxide.

$$CH_2OH(CHOH)_4CHO + 2CuO \longrightarrow CH_2OH(CHOH)_4COOH + Cu_2O$$

Glucose reduces Tollen's reagent to a shining mirror or black precipitate of silver.

$$CH_2OH(CHOH)_4CHO + Ag_2O \longrightarrow CH_2OH(CHOH)_4COOH + 2Ag_2OH(CHOH)_4COOH + 2Ag_2OH(CHOH)_4$$

3. Reduction

On reduction with Na amalgam and water, glucose gives a hexahydric alcohol called sorbitol.

$$CH_2OH(CHOH)_4CHO$$
 $\xrightarrow{Na/Hg+H_2O}$ $CH_2OH(CHOH)_4CH_2OH$

> On reduction with conc. HI and red P, glucose gives n-hexane.

$$CH_2OH(CHOH)_4CHO \xrightarrow{HI+redP} CH_3 - (CH_2)_4 - CH_3$$

4. Addition with HCN

> Glucose reacts with HCN to form glucose cyanohydrin.

$$CH_2OH(CHOH)_4CHO + HCN \longrightarrow CH_2OH(CHOH)_4CH(OH)CN$$

5. Condensation with Hydroxylamine

> Glucose condenses with hydroxylamine to form glucose oxime.

$$CH_2OH(CHOH)_4CHO + NH_2OH \longrightarrow CH_2OH(CHOH)_4CH = NOH + H_2OH$$

6. Condensation with Phenyl hydrazine

Glucose condenses with one molecule of phenyl hydrazine to form glucose phenyl

hydrazone.

> It reacts with excess phenyl hydrazine to from glucosazone.

7. Acylation

> On heating with acetyl chloride or acetic anhydride, glucose gives glucose penta acetate.

MUTAROTATION

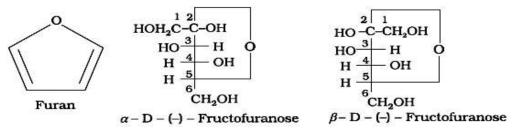
- > The change in specific rotation of an optically active compound in solution with time is called mutarotation.
- \triangleright When α -D glucose solution having a specific rotation of +110° is allowed to stand, the specific rotation gradually falls to +52.5°.
- \triangleright Similarly, when β -D glucose solution having a specific rotation of +19.2° is allowed to stand, its specific rotation gradually increases and remains constant at +52.5°.
- > This change in specific rotation with time is called mutarotation.

ANOMER

- ➤ Pair of diastereomers which differ only at carbon-1 are called anomers.
- > Carbon-1 is called anomeric carbon.
- \triangleright α -D glucose and β -D glucose are anomers.

α β H₂OH H₂C-OH H₃C-H O HO₃C-H O H₄C-OH H₅C 6 CH₂OH 6 CH₂OH

FRUCTOSE


- ➤ Fructose has the molecular formula C₆H₁₂O₆.
- \succ It contains a ketonic functional group at C_2 and six carbon atom in the straight chain as in the case of glucose.
- ➤ It belongs to D series and is a leavo rotatory compound.
- ➤ It is appropriately written as D-(-) fructose.
- > Its open chain structure is as shown below.

CYCLIC STRUCTURE OF FRUCTOSE

FURANOSE STRUCTURE

 \succ Fructose exists in two cyclic forms which are obtained by the addition of -OH at C_5 to the (=C=O) group.

- > The five membered ring obtained is known as **furanose.**
- > Furan is a five membered cyclic compound with one oxygen and four carbon atoms.

DISACCHARIDES

- \triangleright These are carbohydrates with the general formula $C_{12}H_{22}O_{11}$.
- > Disaccharides give two molecules of the same or different monosaccharides on hydrolysis.
- > The two monosaccharides are joined together by an oxide linkage formed by the loss of a water molecule.
- > The linkage formed between two monosaccharide units through oxygen atom is called **glycosidic linkage.**

SUCROSE

- > Sucrose occurs in sugar cane, beet root etc.
- \triangleright Sucrose on hydrolysis gives equimolar mixture of D-(+) glucose and D-(-) fructose.

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$$

- \triangleright The two monosaccharides are held together by a glycosidic linkage between C₁ of α glucose and C₂ of β-fructose.
- > The reducing groups of glucose and fructose are involved in glycosidic bond formation.
- > Therefore, sucrose is a **non reducing sugar.**

INVERT SUGAR

- Sucrose is dextrorotatory.
- After hydrolysis, it gives dextrorotatory glucose and laevorotatory fructose.
- \triangleright Since the laevorotation of fructose (-92.4°) is more than the dextrorotation of glucose (+52.5°), the mixture is laevorotatory.
- ➤ Thus, hydrolysis of sucrose brings about a change in the sign of rotation, from dextro (+) to laevo (-).
- > The product obtained is known as **Invert Sugar.**

MALTOSE

- > It is obtained by the partial hydrolysis of starch by the action of the enzyme diastase present in malt extract on starch.
- \succ Maltose is composed of two α -D glucose units in which C₁ of one glucose (I) is linked to C₄ of another glucose unit (II).
- ➤ The free aldehyde group can be produced at C₁ of second glucose in solution and it shows reducing properties.
- > So it is a reducing sugar.

LACTOSE

- > Lactose occurs in the milk of all animals and is also known as milk sugar.
- ➤ Cow's milk contains about 4% and human milk contains about 7% lactose.
- > This sugar is not present in plants.
- \triangleright It undergoes hydrolysis by the enzyme called emulsin which specially hydrolyses β -glycosidic linkages.
- \triangleright Lactose is composed of β -D galactose and β -D glucose.
- \triangleright The linkage is between C₁ of galactose and C₄ of glucose.
- Hence it is also a reducing sugar.

POLYSACCHARIDES

- > Carbohydrates which give a large number of monosaccharide molecules on hydrolysis.
- \triangleright They have the general formula $(C_6H_{10}O_5)_n$.
- > Polysaccharides contain a large number of monosaccharide units joined together by glycosidic linkages.
- > Polysaccharides mainly act as the food storage or structural materials.
- > Two important polysaccharides of plant origin are starch and cellulose.

1. STARCH

- Starch is the main storage polysaccharide of plants.
- It is the most important dietary source for human beings.
- > High content of starch is found in cereals, roots, tubers and some vegetables.
- \triangleright Starch is a polymer of α -glucose and consists of two components.
- > Amylose and amylopectin.

AMYLOSE

- > Amylose is a water soluble component which consists of 15-20% of starch.
- > Chemically amylase is a long unbranched chain with 200-1000 α -D+ glucose units held by C_1 - C_4 glycosidic linkage.

AMYLOPECTIN

- > Amylopectin is insoluble in water and constitutes about 80 85% starch.
- \triangleright It is a branched chain polymer of α -D glucose units in which chain is formed by C_1-C_4 glycosidic linkage whereas branching occurs by C_1-C_6 glycosidic linkage.

2. CELLULOSE

- > Cellulose occurs exclusively in plants and it is the most abundant organic substance in plant kingdom.
- > It is a predominant constituent of cell wall of plant cells.
- Cellulose is a straight chain polysaccharide.
- \triangleright It is composed of only β -D-glucose units which are joined by glycosidic linkage between C_1 of one glucose unit and C_4 of the next glucose unit.

3. Glycogen

> The carbohydrates are stored in animal body as glycogen.

- > It is also known as animal starch because its structure is similar to amylopectin and is rather more highly branched.
- > It is present in liver, muscles and brain.
- ➤ When the body needs glucose, enzymes break the glycogen down to glucose.
- > Glycogen is also found in yeast and fungi.

IMPORTANCE OF CARBOHYDRATE

- > Carbohydrates are essential for life in both plants and animals.
- > They work as body fuels and act as the main source of energy.
- > It acts as storage of energy for the functioning of living organisms.
- > Carbohydrate like cellulose form structural material for cells.
- > Some carbohydrates such as sugar and starch serve as food.

CARBOHYDRATES AT A GLANCE

		REDUCING	MONO	GLYCOSIDIC LINKAGE
No.	SUGAR	CHARACTER	SACCHARIDES	
			α-D glucose +	C1 of α -glucose and C2 of
1	Sucrose	Non-reducing	β-D-fructose	β-fructose (C1 – C2)
			α -D glucose +	C1 of one α -glucose and
2	Maltose	Reducing	α -D-glucose	C4 of another α - glucose
				(C1 - C4)
			β-D-glucose +	C1 of galactose and C4 of
3	Lactose	Non-reducing	β-D-galactose	glucose
				1. Amylose is a linear
	Starch		α -D-glucose	polymer of α -D-glucose
4	Amylose	Non-reducing		(C1-C4)
				2. Amylopectin is a
	Starch		α -D-glucose	branched chain polymer
5	Amylopectin	Non-reducing		of -D-glucose (C1-C4 &
				C1-C6)
	Cellulose	Non-reducing	β-D-glucose	C1 of one glucose and C4
6				of another glucose
	Glycogen	Non-reducing	a-D-glucose	It is a branched chain
7				polymer of α -D-glucose
				(C1-C4 & C1-C6)

AMINO ACIDS

> Amino acids are organic compounds containing both amino group and a carboxyl group.

R-CH-COOH | NH₂

> They can be represented by the general formula

> They are very important because they are the building blocks of proteins.

- > Human body can synthesize 10 out of 20 amino acids.
- > Therefore, others must be supplied through our diet.
- > The amino acids which can be synthesized in the body are known as **Non-Essential**Amino Acids (NEAA).
- > The amino acids which cannot be synthesized in the body and must be obtained through diet are known as **Essential Amino Acids (EAA).**

CLASSIFICATION OF AMINO ACIDS

- \triangleright Amino acids can be classified as α , β , γ and δ depending upon the relative position of amino group with respect to carboxyl group.
- \triangleright Of these, α amino acids are important because they are building block of proteins.
- > Amino acids are classified as neutral, basic and acidic depending upon the relative number of amino group and carboxyl group in their molecule.

1. NEUTRAL AMINO ACIDS

- Neutral Amino acids have equal number of −NH₂ and −COOH group.
- ➤ Eg: H₂N-CH₂-COOH

2. BASIC AMINO ACIDS

- ➤ Basic Amino Acids have more -NH₂ group than carboxyl group.
- ➤ Eg: Lysine

3. ACIDIC AMINO ACIDS

- > Acidic Amino acids have more carboxyl group than amino group.
- > Eq: Aspartic acid.

ZWITTER ION

- > Amino acid does not contain free amino and free carboxyl groups.
- Since one is acidic and the other is basic, it undergoes an internal neutralization and produces an internal salt known as zwitter ion.

$$\begin{array}{c|c}
 & O \\
 & \parallel \\
 & R-CH-C-O \\
 & \downarrow \\
 & :NH_2
\end{array}$$

$$\begin{array}{c}
 & O \\
 & \parallel \\
 & R-CH-C-O \\
 & \downarrow \\
 & \uparrow NH_3 \\
 & (Zwitter ion)
\end{array}$$

- > In acid medium, zwitter ion is acting as a cation and it move towards the cathode during electrolysis.
- > In basic medium, zwitter ion is acting as an anion and it move towards the anode during electrolysis.

ISOELECTRIC POINT

- > It is a particular pH where the number of cations is exactly balanced by the number of anions.
- > At this pH there is no resultant migration of ions either towards the cathode or anode.
- > This point is called isoelectric point.

PEPTIDES AND POLYPEPTIDES

 \triangleright Compounds formed by the condensation of two or more same or different α -amino acids.

- > The condensation occurs between amino acids with the elimination of water.
- ➤ Here condensation takes place between carboxyl group of one amino acid and amino group of another amino acid with the elimination of a water molecule. The resulting -CO-NH- linkage is called a peptide linkage.

$$\begin{array}{c|c} \mathbf{H_2N-CH_2-COOH} + \mathbf{H_2N-CH-COOH} \\ - \mathbf{H_2O} & \mathbf{CH_3} \\ \\ \mathbf{H_2N-CH_2-CO-NH} - \mathbf{CH-COOH} \\ \\ \mathbf{Peptide\ linkage} & \mathbf{CH_3} \end{array}$$

- > Depending upon the number of amino acid residues per molecule, the peptides are classified into dipeptide, tripeptide, polypeptide etc.
- ➤ A peptide having molecular mass up to 10,000 u is called a poly peptide.

PROTEINS

- > Proteins are highly complex nitrogenous molecules which are essential for the growth and maintenance of life.
- ➤ They are composed of a large number of different amino acids and are having a molecular mass above 10,000 u.
- > Proteins are the chief constituent of protoplasm in all living cells.

CLASSIFICATION OF PROTEINS

> Based on the molecular structure proteins can be classified into two types. They are:

1. Fibrous Proteins

- > It consists of linear molecules which are placed side by side to form fibres.
- > The molecules are held together by hydrogen bonds.
- These are usually insoluble in water.
- > Eg: Keratin, Myosin, Collagen, Fibroin etc.

2. Globular Proteins

- > In this, the molecules are folded together to form a spherical shape.
- > The peptide chains in globular proteins are held together by hydrogen bonds.
- > These are soluble in water, acids, bases and salts.
- > Eg: Insulin, Albumins, Enzymes, Hormones etc.

STRUCTURE OF PROTEINS

➤ The structure is divided into 1°, 2°, 3° and Quaternary structure.

PRIMARY STRUCTURE (1°)

- > 1° structure shows how the atoms of protein molecules are joined to one another by covalent bonds.
- > Proteins are made up of peptide chains i.e., amino acid residues are joined by amide linkages.

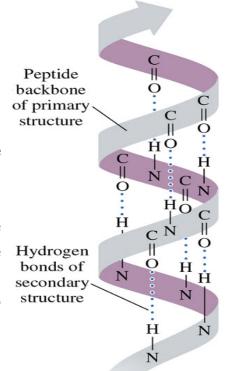
> Primary structure of proteins gives the number, nature and sequence of amino acid residues along the peptide chains.

SECONDARY STRUCTURE (2°)

- > 2° structure shows the way in which the polypeptide chains are coiled to give a helical structure.
- > The secondary structure deals with the conformation of the peptide chain present in the protein molecule.
- > In order to explain the secondary structure two models were proposed by Pauling and Corey.
- ➤ They are: 1. a-helix
 - 2. β -Pleated structure.

α-Helix

- > It is a spiral arrangement of poly peptide chain, winding around a central axis in a spiral manner.
- > There are 3.7 amino acid residues in one complete turn of the helix.
- ➤ The minimum distance between the two successive turns is 5.4Å.
- > The diameter of the helix is 10Å.
- ➤ Intramolecular hydrogen bonds are formed between the C=O of one amino acid residue and the N-H of the fourth amino acid residue in the chain.
- ➤ The hydrogen bonding prevents the free rotation and so the helix is rigid.
- > The a-helix may be either left or right handed.
- > The right handed helix is more stable.
- ➤ Eg:- Hair, horn, nail, wool etc.


β-PLEATED STRUCTURE

- ➤ In this, the long peptide chains lie side by side to form a flat sheet.
- > Each chain is held to the neighbouring chains by hydrogen bond.
- These sheets are then stacked one above the other to form a 3 dimensional structure called the β-Pleated structure.

RCH RCH RCH RCH RCH RCH C=O C=O C=O H N HCR HCR HCR HCR HCR O=C N-H-O=C N-H RCH RCH RCH C=O C=O N H-N H-N HCR HCR HCR HCR HCR HCR ACC ACC ACC

TERTIARY STRUCTURE (3°)

- > 3° structure refers to the three dimensional structure.
- > This arises due to folding, coiling and bending of polypeptide chain producing three dimensional structures.

- > This structure describes the overall spatial arrangements of the polypeptide chain and gives exact molecular shape.
- > Eg: Globular Protein

QUATERNARY STRUCTURE

- > Some of the proteins are composed of two or more polypeptide chains known as sub units.
- > These sub units are held together by non-covalent interactions like hydrogen bonding or Vander Waals forces.
- > The spatial arrangement of the poly peptide sub units with respect to each other is known as quaternary structure.

DENATURATION OF PROTEINS

- > The disruption of 3 dimensional structure of proteins by changes in pH, temperature and presence of chemical agents is called denaturation.
- > As a result, globules unfold and helix gets uncoiled and protein loses its biological activity.
- > During denaturation 2° and 3° structures are destroyed but 1° structure remains intact.

ENZYMES

- > Enzymes are biological catalysts produced by living cells which catalyse the biochemical reactions in living organisms.
- > Almost all the enzymes are globular proteins.
- > Enzymes are highly specific in nature.
- > Eg:- The enzyme that catalyses hydrolysis of maltose into glucose is named as maltase.

$$C_{12}H_{22}O_{11} \xrightarrow{\text{Maltase}} 2C_6H_{12}O_6$$

NUCLEIC ACIDS

- > Nucleic acids are biologically important polymers which are present in the nuclei of all living cells.
- It plays an important role in the growth and development of all forms of life.
- > Nucleic acids are polymers of certain monomeric units called nucleotides.
- > They are polynucleotides.

CHEMICAL COMPOSITION OF NUCLEIC ACIDS

NUCLEOTIDE

- > A nucleotide is a complex molecule made up of one unit of phosphate, a pentose sugar and nitrogen containing heterocyclic base.
- > Each nucleotide has three components-a nitrogen containing heterocyclic base, a pentose sugar and a phosphate group.
- > The heterocyclic nitrogenous base may be purines (adenine and guanine) of pyramidines (thymine, cytosine and uracil).
- > The sugar unit present in nucleotides is either ribose or deoxyribose.

NUCLEOSIDE

> Nucleosides are the fundamental units in nucleic acids in which the heterocyclic nitrogenous base is joined to a sugar unit.

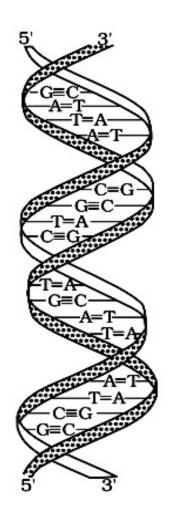
CLASSIFICATION OF NUCLEIC ACIDS

Nucleic acids are of two types:

DEOXYRIBO NUCLEIC ACID (DNA)

- > This nucleic acid contains 2-deoxyribose.
- ➤ The heterocyclic nitrogenous bases present are the purines-adenine and guanine, pyramidines-thymine and cytosine.

RIBONUCLEIC ACID (RNA)


- > This nucleic acid contains ribose.
- ➤ The bases present in RNA are the purines-adenine and guanine and the pyramidinescytosine and uracil.

TYPES OF RNA

- Messenger RNA (m-RNA)
- > It carries the message of DNA for specific protein synthesis.
- Ribosomal RNA (R-RNA)
- > It provides the site for protein synthesis in the cytoplasm.
- > Transfer RNA (t-RNA):
- > It transfers amino acids to the site of protein synthesis.

STRUCTURE OF NUCLEIC ACIDS

- Watson and Crick in 1953 proposed a structural model of DNA.
- A DNA molecule consists of two strands twisted in the form of a double helix.
- > The DNA molecule looks like a spiral stair case.
- > The two strands of the polynucleotide chains coiled around each other in the form of a double helix.
- The strands are made up of nitrogenous base pairs connected by hydrogen bonds.
- > The long strands are made up of pentose sugar and phosphate alternating with each other.
- > The base pairs have one nitrogenous base from the purine and another from the pyramidine group.
- ➤ The pairing between nitrogenous bases is always Adenine-Thymine and Guanine-Cytosine.

- > The nitrogenous bases are complementary to each other.
- > The nucleotides making up each strand of DNA are connected by phosphodiester bonds.
- > This forms the back bone of each DNA strand.
- \succ Adenine pairs with thymine by two hydrogen bonds (A=T) and guanine pairs with cytosine by three hydrogen bonds (G \equiv C).

STRUCTURAL DIFFERENCE BETWEEN DNA AND RNA

DNA	RNA	
It is double stranded	It is single stranded	
2-Deoxyribose sugar is present	Ribose sugar is present	
Bases present are adenine, guanine, cytosine and thymine.	Bases present are adenine, guanine, cytosine and uracil	
Present mainly in the nuclei of the cell	Present throughout the cell	

BIOLOGICAL FUNCTIONS OF NUCLEIC ACIDS

- > DNA is responsible for maintaining the identity of different species of organisms.
- ➤ A DNA molecule is capable of self duplication during cell division.
- Protein Synthesis by RNA molecules.
- Message for protein synthesis of a particular protein is present in DNA.

VITAMINS

- Vitamins are complex organic compounds which are required for the normal health, growth and maintenance of the body.
- These substances are vital for the body.
- Vitamins cannot be produced by the body.
- Vitamins are provided through diet.

CLASSIFICATION OF VITAMINS

Fat Soluble Vitamins

- > Vitamins which are soluble in fat and oils but insoluble in water are called fat soluble vitamins.
- > These include vitamin A, D, E and K.
- > They are stored in liver and adipose (fat storing) tissues.

Water Soluble Vitamins

- > Vitamins which are soluble in water are called water soluble vitamins.
- > These include vitamin B and C.
- > Water soluble vitamins must be supplied regularly in the diet.
- > Because they are readily excreted in urine and cannot be stored in our body.

VITAMINS AND DEFICIENCY DISEASES

No.	NAME OF VITAMIN	SOURCES	DEFICIENCY DISEASES
1	Vitamin A	Fish liver oil, carrots,	Xerophthalmia,
	(Retinol)	butter and milk	Night blindness
2	Vitamin B1	Yeast, milk, green	Beri beri
	(Thiamine)	vegetables and cereals.	
3	Vitamin B2	Milk, egg white, liver,	Cheilosis, digestive
	(Riboflavin)	kidney	disorders and burning sensation of the skin.
4	Vitamin B6	Yeast, milk, egg yolk,	Convulsions
	(Pyridoxine)	cereals and grams.	
5	Vitamin B12	Meat, fish, egg and curd	Pernicious anaemia
	(Cyanocobalamine)	Cara	remicious anaemia
6	Vitamin C	Citrus fruits, amla and	
	(Ascorbic Acid)	green leafy vegetables.	Scurvy
7	Vitamin D	Exposure to sunlight,	Rickets, and osteomalacia
	(Ergocalciferol)	fish and egg yolk.	
8	Vitamin E	Vegetable oils like wheat	Increased fragility of RBCs and muscular weakness
	(Tocopherol)	germ oil, sunflower oil.	
9	Vitamin K	Green leafy vegetables	Increased blood clotting
	(Phylloquinone)		time

NOTE

XEROPHTHALMIA: Hardening of cornea of eye due to the deficiency of vitamin A.

BERI BERI: Inflammation of the nerves and heart failure, ascribed to a deficiency of vitamin B₁.

CHIELOSIS: Fissuring at corners of mouth and lips due to the deficiency of vitamin B2.

PERNICIOUS ANEMIA: Deficiency of RBC in haemoglobin due to the deficiency of vitamin B12.

SCURVY: Bleeding of gums due to the deficiency of vitamin C.

RICKETS: Imperfect calcification, softening, and distortion of the bones typically resulting in bow legs in children due to the deficiency of vitamin D.

OSTEOMALACIA: Joint Pains and softening of the bones caused by impaired bone metabolism due to the deficiency of Vitamin D.