Question 1:

Exercise 10.2

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $v^2 = 12x$.

Solution:

The given equation is $y^2 = 12x$

Here, the coefficient of x is positive.

Hence, the parabola opens towards the right.

On comparing this equation with $y^2 = 4ax$, we obtain

$$4a = 12 \Rightarrow a = 3$$

Therefore,

Coordinates of the focus $F = (a,0) \Rightarrow (3,0)$

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = -a, i.e., x = -3

Length of latus rectum = $4a = 4 \times 3 = 12$

Question 2:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = 6y$.

Solution:

The given equation is $x^2 = 6y$

Here, the coefficient of y is positive.

Hence, the parabola opens upwards.

On comparing this equation with $x^2 = 4ay$, we obtain

$$4a = 6 \Rightarrow a = \frac{3}{2}$$

Therefore,

Coordinates of the focus $F = (0, a) \Rightarrow (0, \frac{3}{2})$

Since the given equation involves x^2 , the axis of the parabola is the y-axis.

Equation of directrix,
$$y = -a$$
, i.e., $y = -\frac{3}{2}$

Length of latus rectum =
$$4a = 4 \times \frac{3}{2} = 6$$

Question 3:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = -8x$

Solution:

The given equation is $y^2 = -8x$

Here, the coefficient of x is negative.

Hence, the parabola opens towards the left.

On comparing this equation with $y^2 = -4ax$, we obtain

$$-4a = 8 \Rightarrow a = -2$$

Therefore,

Coordinates of the focus $F = (-a, 0) \Rightarrow (-2, 0)$

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = a, i.e., x = 2

Length of latus rectum = $4a = 4 \times 2 = 8$

Question 4:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -16y$.

Solution:

The given equation is $x^2 = -16y$

Here, the coefficient of y is negative.

Hence, the parabola opens downwards.

On comparing this equation $x^2 = -4ay$, we obtain

$$-4a = -16 \Rightarrow a = 4$$

Therefore,

Coordinates of the focus F = (0, -a) = (0, -4)

Since the given equation involves x^2 , the axis of the parabola is the y-axis.

Equation of directrix, y = a i.e., y = 4

Length of latus rectum $4a = 4 \times 4 = 16$

Question 5:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $y^2 = 10x$.

Solution:

The given equation is $y^2 = 10x$

Here, the coefficient of x is positive.

Hence, the parabola opens towards the right.

On comparing this equation with $y^2 = 4ax$, we obtain

$$4a = 10 \Rightarrow a = \frac{5}{2}$$

Therefore,

Coordinates of the focus $=(a,0)=(\frac{5}{2},0)$

Since the given equation involves y^2 , the axis of the parabola is the x-axis.

Equation of directrix, x = -a, i.e., $x = -\frac{5}{2}$

Length of latus rectum $= 4a = 4 \times \frac{5}{2} = 10$

Question 6:

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum for $x^2 = -9y$.

Solution:

The given equation is $x^2 = -9y$

Here, the coefficient of \mathcal{Y} is negative.

Hence, the parabola opens downwards.

On comparing this equation $x^2 = -4ay$, we obtain

$$-4a = -9 \Rightarrow a = \frac{9}{4}$$

Therefore,

Coordinates of the focus $= (0, -a) = (0, -\frac{9}{4})$

Since the given equation involves x^2 , the axis of the parabola is the y – axis.

Equation of directrix, y = a, i.e., $y = \frac{9}{4}$

Length of latus rectum = $4a = 4 \times \frac{9}{4} = 9$

Question 7:

Find the equation of the parabola that satisfies the following conditions: Focus (6,0); Directrix x = -6.

Solution:

Focus (6,0); Directrix x = -6

Since the focus lies on the x-axis, the x-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $y^2 = 4ax$ or $y^2 = -4ax$.

It is also seen that the directrix, x = -6 is to the left of the y-axis while the focus (6,0) is to right of the y-axis.

Hence, the parabola is of the form $y^2 = 4ax$.

Here, a = 6

Thus, the equation of the parabola is $y^2 = 24x$.

Question 8:

Find the equation of the parabola that satisfies the following conditions: Focus (0,-3); Directrix y=3

Solution:

Focus (0,-3); Directrix y=3

Since the focus lies on the y-axis, the y-axis is the axis of the parabola.

Therefore, the equation of the parabola is either of the form $x^2 = 4ay$ or $x^2 = -4ay$.

It is also seen that the directrix, y = 3 is above the x-axis while the focus (0,-3) is below the x-axis.

Hence, the parabola is of the form $x^2 = -4ay$.

Here, a = 3

Thus, the equation of the parabola is $x^2 = -12y$.

Question 9:

Find the equation of the parabola that satisfies the following conditions: Vertex (0,0); Focus (3,0)

Solution:

Vertex (0,0); Focus (3,0)

Since the vertex of the parabola is (0,0) and the focus lies on the positive x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = 4ax$

Since the focus is (3,0), a=3

Thus, the equation of the parabola is $y^2 = 4 \times 3 \times x$, i.e., $y^2 = 12x$

Question 10:

Find the equation of the parabola that satisfies the following conditions: Vertex (0,0); Focus (-2,0)

Solution:

Vertex
$$(0,0)$$
; Focus $(-2,0)$

Since the vertex of the parabola is (0,0) and the focus lies on the negative x-axis, x-axis is the axis of the parabola, while the equation of the parabola is of the form $y^2 = -4ax$

Since the focus is
$$(-2,0)$$
, $a=2$

Thus, the equation of the parabola is $y^2 = -4 \times 2 \times x$, i.e., $y^2 = -8x$

Question 11:

Find the equation of the parabola that satisfies the following conditions: Vertex (0,0) passing through (2,3) and axis is along *x*-axis.

Solution:

Since the vertex is (0,0) and the axis of the parabola is the x-axis, the equation of the parabola is either of the form $y^2 = 4ax$ or $y^2 = -4ax$

The parabola passes through point (2,3), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $y^2 = 4ax$, while point (2,3) must satisfy the equation $y^2 = 4ax$ Hence,

$$3^2 = 4a \times 2 \Rightarrow a = \frac{9}{8}$$

Thus, the equation of the parabola is

$$\Rightarrow y^2 = 4 \times \frac{9}{8} \times x$$

$$\Rightarrow y^2 = \frac{9}{2}x$$

$$\Rightarrow 2y^2 = 9x$$

Question 12:

Find the equation of the parabola that satisfies the following conditions: Vertex (0,0) passing through (5,2) and symmetric with respect to y-axis.

Solution:

Since the vertex is (0,0) and the parabola is symmetric about the y-axis, the equation of the parabola is either of the form $x^2 = 4ay$ or $x^2 = -4ay$

The parabola passes through point (5,2), which lies in the first quadrant.

Therefore, the equation of the parabola is of the form $x^2 = 4ay$, while point (5,2) must satisfy the equation $x^2 = 4ay$ Hence,

$$5^2 = 4a \times 2 \Rightarrow 25 = 8a \Rightarrow a = \frac{25}{8}$$

Thus, the equation of the parabola is

$$\Rightarrow x^2 = 4 \times \frac{25}{8} \times y$$
$$\Rightarrow x^2 = \frac{25}{2}y$$
$$\Rightarrow 2x^2 = 25y$$