Exerise 7.3

1. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see

...(i)

[CPCT]

figure). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.
- **Sol.** (i) Consider triangles ABD and ACD,

We have
$$AB = AC$$
 [Given]
 $BD = CD$ [Given]
 $AD = DA$ [Common]
So, $\triangle ABD \cong \triangle ACD$ [SSS rule]
 $\therefore \angle BAD = \angle CAD \text{ and } \angle ABD = \angle ACD$

(ii) Consider triangles ABP and ACP,

We have
$$AB = AC$$
 [Given] $AP = PA$ [Common]

and
$$\angle BAP = \angle CAP$$
 [From (i)]

$$\therefore \qquad \Delta \text{ ABP} \cong \Delta \text{ ACP} \qquad [SAS \text{ rule}]$$

$$\Rightarrow$$
 BP = PC, \angle BPA = \angle CPA

$$(iii) \angle BAP = \angle CAP$$
 [From result (ii)]

$$\Rightarrow$$
 AP bisects $\angle A$.

Also,
$$\angle$$
 BAD + \angle ABD = \angle CAD = \angle ACD [From (i)]
 \Rightarrow \angle BDP = \angle CDP [Exterior angle property]

So, DP bisects $\angle D$.

Hence, AP bisects $\angle A$ as well as $\angle D$.

(iv) Also,
$$\angle$$
 BPA + \angle CPA = 180°[Linear pair] \Rightarrow 2 \angle BPA = 180°[From result (ii)] \Rightarrow AS BP = CP [From result (ii)]and AP \bot BC [Proved above]

- \Rightarrow AP is perpendicular bisector of BC.
- **2.** AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
 - (i) AD bisects BC
- (ii) AD bisects $\angle A$.

Sol. Consider triangles ABD and ACD,

We have AB = AC

[Given]

AD = AD

[Common]

 $\angle ADB = \angle ADC$ [90° each]

 $\triangle ABD \cong \triangle ACD$ [RHS rule]

[CPCT]

 \Rightarrow AD bisects BC.

(ii) and
$$\angle BAD = \angle CAD$$

[CPCT]

AD bisects $\angle BAC$, i.e., $\angle A$.

- **3.** Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see figure). Show that:
 - (i) $\triangle ABM \cong \triangle PQN$

Sol. (i) M and N are mid-points of BC and QR respectively, as AM and PN are medians.

$$\therefore BM = \frac{1}{2}BC \text{ and } QN = \frac{1}{2}QR \qquad ...(i)$$

Also, BC = QR

[Given]

$$\Rightarrow \quad \frac{1}{2}\,\mathrm{BC} \,=\, \frac{1}{2}\,\mathrm{QR} \quad \Rightarrow \quad \mathrm{BM} \,=\, \mathrm{QN} \qquad ...(ii) \quad [\mathrm{From}\ (i)]$$

Consider triangles ABM and PQN,

We have AB = PQ

[Given]

AM = PN

[Given]

and BM = QN

[From (ii)]

 $\therefore \Delta ABM \cong \Delta PQN$

[SSS rule]

(ii) From result (i),

$$\angle ABM = \angle PQN \implies \angle ABC = \angle PQR \qquad ...(iii)$$

Consider triangles ABC and PQR,

We have
$$AB = PQ$$
 [Given]
 $BC = QR$ [Given]
and $\angle ABC = \angle PQR$ [From (iii)]

$$\triangle ABC \cong \triangle PQR.$$
 [SAS rule]

- **4.** BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- Sol. Consider triangles BFC and CEB,

We have
$$BE = CF$$
 [Given]
 $BC = CB$ [Common]
and $\angle BFC = \angle BEC$ [90° each]
 $\therefore \quad \Delta BFC \cong \Delta CEB$ [RHS rule]
 $\Rightarrow \quad \angle FBC = \angle ECB$
i.e., $\angle ABC = \angle ACB$
 $\Rightarrow \quad AC = AB$

[Sides opposite to equal angles of a triangles are equal.] $\Rightarrow \Delta ABC$ is an isosceles triangle.

- **5.** ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that $\angle B = \angle C$.
- Sol. Consider triangles APB and APC,

