Exerise 7.2

- **1.** In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:

 - (i) OB = OC (ii) AO bisects $\angle A$.
- **Sol.** (i) In \triangle ABC, AB = AC [Given]

$$\Rightarrow$$
 $\angle ABC = \angle ACB$

[Angles opposite to equal

sides are equal.]

$$\Rightarrow \frac{1}{2} \angle ABC = \frac{1}{2} \angle ACB$$

$$\Rightarrow$$
 $\angle OBC = \angle OCB$

[: OB and OC are bisectors of ∠ABC and

∠ACB respectively.]

$$\Rightarrow$$
 OC = OB

...(i)

[Sides opposite to equal angles of a triangle are equal.]

(ii) Consider triangles AOB and AOC,

We have OC = OB

[From (i)]

AO = OA

[Common]

and AB = AC [Given] $\therefore \quad \Delta AOB \cong \Delta AOC$ [SSS rule] $\Rightarrow \quad \angle OAB = \angle OAC$ [CPCT]

- \Rightarrow AO bisects \angle BAC.
- **2.** In $\triangle ABC$, AD is the perpendicular bisector of BC (see figure). Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.

Sol. Since AD is perpendicular bisector of BC.

$$\therefore BD = CD \text{ and } \angle ADB = \angle ADC = 90^{\circ} \qquad \dots(i)$$

Consider triangles ADB and ADC,

We have BD = DC

and
$$\angle ADB = \angle ADC$$

$$AD = AD$$

$$\therefore \quad \Delta \text{ ADB} \cong \Delta \text{ ADC}$$

[From (i)]

$$\therefore$$
 AB = AC.

Therefore, $\triangle ABC$ is an isosceles triangle with AB = AC. [CPCT]

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see figure). Show that these altitudes are equal.

Sol. In
$$\triangle$$
 ABC, AB = AC [Given]

[Angles opposite to equal sides of a triangle are equal.] Consider triangles BFC and BCE,

We have $\angle FBC = \angle ECB$ [From (i)]

$$BC = CB$$
 [Common]

$$\angle BFC = \angle CEB$$
 [90° each]

$$\therefore$$
 $\triangle BCF \cong \triangle CBE$ [AAS rule]

$$\Rightarrow$$
 CF = BE.

Hence, altitudes to the equal sides of a triangle are equal.

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see figure). Show that:

(i)
$$\triangle ABE \cong \triangle ACF$$

- (ii) AB = AC, i.e., ABC is an isosceles triangle.
- **Sol.** (i) Consider triangles ABE and ACF,

We have BE = CF

[Given]

$$\angle A = \angle A$$

[Common]

$$\angle AEB = \angle AFC$$

[90° each]

 $\Delta ABE \cong \Delta ACF$

[AAS rule]

- (ii) Since \triangle ABE \cong \triangle ACF [Proved above] Hence, AB = AC i.e., \triangle ABC is isosceles.
 - **5.** ABC and DBC are two isosceles triangles on same base BC (see figure). Show that $\angle ABD = \angle ACD$.

Proof: Consider triangles ABD and ACD,

AB = AC

BD = CD

AD = AD

$$\therefore \qquad \Delta \text{ ABD } \cong \Delta \text{ ACD}$$

$$\therefore$$
 $\angle ABD = \angle ACD$.

Sol. As
$$AB = AC$$

[Given]

$$\Rightarrow \angle 1 = \angle 2$$

...(i)

[Angles opposite to equal sides of a triangle are equal.]

and
$$AC = AD$$
 (: $AB = AD$)[Given]

$$\Rightarrow \angle 3 = \angle 4$$

...(*ii*)

[Angles opposite to equal sides of a triangle are equal.]

Also, in Δ DBC,

$$\angle$$
 DBC + \angle BCD + \angle CDB = 180°

[Sum of angles of a triangle is 180°.]

$$\Rightarrow$$
 $\angle 1 + (\angle 2 + \angle 3) + \angle 4 = 180^{\circ}$

[CPCT]

[Given]

[Given]

[Common]

[SSS rule]

[CPCT]

$$\Rightarrow \angle 2 + \angle 2 + \angle 3 + \angle 3 = 180^{\circ} \qquad [Using (i), (ii)]$$

$$\Rightarrow 2(\angle 2 + \angle 3) = 180^{\circ}$$

$$\Rightarrow \angle 2 + \angle 3 = 90^{\circ} \Rightarrow \angle BCD = 90^{\circ}.$$

7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

8. Show that the angles of an equilateral triangle are 60° each.

 $\angle B = \angle C = 45^{\circ}$.

Sol. As \triangle ABC is equilateral.

$$\therefore$$
 AB = BC = CA

Now AB = BC
$$\Rightarrow \angle C = \angle A$$
 ...(i) $B \leftarrow AB$

[Angles opposite to equal sides of a triangle are equal.]

Similarly, BC = AC
$$\Rightarrow \angle A = \angle B$$
 ...(ii)

[Reason same as above]

$$\Rightarrow$$
 $\angle A = \angle B = \angle C$...(iii) [From (i) and (ii)]
In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$

[Sum of angles of a triangle is 180°.]

$$\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$$
 [From (iii)]

$$\Rightarrow$$
 3 \angle A = 180°

$$\Rightarrow$$
 $\angle A = 60^{\circ}$

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}.$$