Exerise 7.1

1. In quadrilateral ABCD, AC = AD and AB bisects $\angle A$ (see figure). Show that $\triangle ABC \cong \triangle ABD$.

What can you say about BC and BD?

We have
$$AC = AD$$

AB = AB

and $\angle CAB = \angle DAB$

$$\therefore \qquad \Delta \text{ ABC } \cong \Delta \text{ ABD}$$

Therefore, BC = BD.

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$.

Sol. (i) Consider triangles ABD and ABC,

[Given]

[Common]

[:: AB bisects \angle CAD]

[SAS rule]

[CPCT]

We have AD = BC

[Given]

AB = BA

[Common]

 $\angle DAB = \angle CBA$ and

[Given]

 $\triangle ABD \cong \triangle BAC$ ٠.

[SAS rule]

(ii)BD = AC. [CPCT]

$$(iii)$$
 $\angle ABD = \angle BAC.$

[CPCT]

and BC**3.** *AD* areequal perpendiculars to a line segment AB (see figure). Show that CD bisects AB.

- **Sol.** AD and BC are perpendiculars to AB.
 - \Rightarrow AD || BC and CD is transversal.
 - \therefore \angle BCD = \angle ADC, *i.e.*, \angle BCO = \angle ADO [Alternate angles] Consider triangles BCO and ADO,

We have
$$BC = AD$$

[Given]

 \angle OBC = \angle OAD

[90° each]

 \angle BCO = \angle ADO and

[Proved above]

 $\triangle OBC \cong \triangle OAD$

[ASA rule]

Therefore, OB = OA

[CPCT]

Hence, CD bisects AB.

4. l and m are two parallel lines intersected by another pair of parallel lines p and q (see figure). Show that $\triangle ABC \cong$ Δ CDA.

Sol. Since $l \parallel m$ and AC is transversal.

So,
$$\angle 1 = \angle 2$$

...(i)

[Alternate angles] <

...(*ii*)

 $\angle 3 = \angle 4$

[Alternate angles]

Now, in \triangle ADC and \triangle ABC,

$$AC = CA$$

[Common]

 $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$

[From (i) and (ii)]

 \triangle ABC \cong \triangle CDA.

So.

[ASA rule]

5. Line l is the bisector of an angle $\angle A$ and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see figure). Show that:

- (i) $\triangle APB \cong \triangle AQB$
- (ii) BP = BQ or B is equidistant from the arms of $\angle A$.
- **Sol.** : Line l is the bisector of \angle QAP.

$$\therefore \qquad \angle \, QAB = \angle \, PAB$$

AB = BA

 \angle BQA = \angle BPA.

and

...(ii) [Common]

...(iii) $[90^{\circ} \text{ each}]$

(i) In triangles AQB and APB,

$$\angle QAB = \angle PAB$$
; $AB = BA$ and $\angle BQA = \angle BPA$.

[From (i), (ii), (iii)]

 \triangle APB \cong \triangle AQB.

[AAS rule]

[CPCT]

...(i)

(ii) Therefore, BP = BQ

i.e., B is equidistant from the arms of $\angle A$.

6. In figure, AC = AE, AB = AD $\angle BAD = \angle EAC$. Show that BC = DE.

- **Sol.** As $\angle BAD = \angle CAE$ [Given]
 - ⇒ ∠BAD + ∠DAC

∠ DAC is added to both sides

$$\Rightarrow$$
 \angle BAC = \angle DAE

...(i)

Consider triangles BAC and DAE,

We have AB = AD

[Given]

AC = AE

[Given]

 $\angle BAC = \angle DAE$ and

[From (i)]

 $\Delta BAC \cong \Delta DAC$

[SAS rule]

BC = DE.

[CPCT]

7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE \ and \ \angle EPA$ $= \angle DPB$ (see figure). Show that

(i)
$$\Delta DAP \cong \Delta EBP$$

$$(ii)$$
 $AD = BE$.

Sol. Since
$$\angle EPA = \angle DPB$$

[Given]

$$\Rightarrow$$
 \angle EPA + \angle EPD = \angle EPD + \angle DPB

[Adding ∠EPD to both sides]

$$\Rightarrow$$
 $\angle APD = \angle BPE$...(i)

Also,
$$AP = BP$$
 ...(ii) [Given]

and
$$\angle DAP = \angle EBP$$
 ...(iii) [Given]

(i) Consider triangles DAP and EBP,

$$\angle APD = \angle BPE$$
, $AP = BP$ and $\angle DAP = \angle EBP$.

[From (i), (ii), (iii)]

$$\Delta DAP \cong \Delta EBP$$
.

[SAS rule]

$$(ii)$$
 AD = BE.

[CPCT]

8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see figure). Show that:

- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

$$(iv) CM = \frac{1}{2}AB.$$

Sol. (i) Consider triangles AMC and DMB,

We have
$$AM = BM$$
 [Given]

$$CM = DM$$
 [Given]

and $\angle AMC = \angle BMD$ [Vertically opposite angles]

$$\therefore \qquad \Delta \text{ AMC} \cong \Delta \text{ BMD} \qquad [SAS \text{ rule}]$$

(ii) As \angle BAC = \angle DBA [CPCT, from part (i)] and AB is the transversal.

So, DB \parallel AC ...(i)

We have $AC \perp BC$...(ii) [Given]

So, DB \perp BC [From (i) and (ii)]

i.e., \angle DBC is a right angle, i.e., \angle DBC = 90°.

(iii) Consider triangles ABC and DCB.

We have AC = DB [Since $\triangle AMC \cong \triangle BMD$; result (i)]

BC = CB [Common]

and $\angle ACB = \angle DBC$ [Each 90°]

 $\therefore \quad \Delta DBC \cong \Delta ACB \qquad [SAS rule]$

(iv) As DC = AB [CPCT from part (iii)]

 \Rightarrow 2CM = AB [:: M is mid-point of DC]

 \Rightarrow CM = $\frac{1}{2}$ AB.