Exercise 9.3

1. In the adjoining figure, A, B and C are three points on a circle with centre O such that ∠BOC = 30° and ∠AOB = 60°. If D is a point on the circle other than the arc ABC, find ∠ADC.

Sol.
$$\angle AOC = 60^{\circ} + 30^{\circ} = 90^{\circ}$$

$$\angle ADC = \frac{1}{2} \angle AOC$$

[Angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.]

$$\angle ADC = \frac{1}{2} \times 90^{\circ} = 45^{\circ}.$$

- 2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
- **Sol.** We have, OA = OB = AB Given]
 - \therefore ΔOAB is equilateral triangle.

$$\angle AOB = 60^{\circ}$$

$$\angle APB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ} = 30^{\circ}.$$

Also APBQ is a cyclic quadrilateral.

$$\therefore$$
 $\angle P + \angle Q = 180^{\circ}$

[Sum of opposite angles of a cyclic quadrilateral is 180°.]

$$\Rightarrow$$
 30° + \angle Q = 180° \Rightarrow \angle Q = 150°.

3. In the figure given below, $\angle PQR = 100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.

... Angle formed by arc PXR at the centre

$$= 360^{\circ} - (180^{\circ} - 2x)$$
$$= 180^{\circ} + 2x.$$

Also,
$$\angle PQR = \frac{1}{2}(180^{\circ} + 2x)$$

 $\Rightarrow 100^{\circ} = 90^{\circ} + x \Rightarrow x = 10^{\circ}.$

4. In figure, $\angle ABC = 69^{\circ}$, $\angle ACB = 31^{\circ}$, find $\angle BDC$.

Sol. In triangle ABC,

$$\angle A + 69^{\circ} + 31^{\circ} = 180^{\circ}$$

[Sum of angles of a triangle is 180°]

$$\Rightarrow \qquad \angle A = 180^{\circ} - 100^{\circ} = 80^{\circ}.$$

Also,
$$\angle D = \angle A = 80^{\circ}$$

[Angles in the same segment of a circle]

i.e.,
$$\angle BDC = 80^{\circ}$$
.

5. In figure, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC$.

Sol. Given $\angle BEC = 130^{\circ}$, $\angle ECD = 20^{\circ}$.

$$\angle DEC + \angle BEC = 180^{\circ}$$

[Linear pair]

130°

$$\angle DEC = 180^{\circ} - 130^{\circ} = 50^{\circ}.$$

In triangle DEC,

$$\angle D + 50^{\circ} + 20^{\circ} = 180^{\circ}$$

[Sum of angles of a triangle is 180°]

$$\Rightarrow$$
 $\angle D = 110^{\circ}$

...(i)

Also,
$$\angle BAC = \angle D$$

[Angles in the same segment of a circle are equal]

$$\therefore \qquad \angle BAC = 110^{\circ}. \qquad [From (i)]$$

- **6.** ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^{\circ}$, $\angle BAC$ is 30° , find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.
- **Sol.** \angle CDB = \angle BAC = 30° ...(*i*)

[Angles in the same segment]

In triangle BCD,

$$\angle$$
CBD + \angle BCD + \angle CDB = 180°

[Sum of angles of a triangle is 180]

$$70^{\circ} + \angle BCD + 30^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle BCD = 80^{\circ}$$

...(ii)

70°

Now, in $\triangle ABC$,

if AB = BC, then
$$\angle$$
BCA = \angle BAC = 30°

...(*iii*)

[Angles opposite to equal sides are equal]

Now,
$$\angle BCD = \angle BCA + \angle ACD$$

$$\Rightarrow$$
 80° = 30° + \angle ECD

 $[\cdot,\cdot]$ $\angle ACD = \angle ECD$

$$\Rightarrow$$
 $\angle ECD = 50^{\circ}$.

[From (ii) and (iii)]

- 7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
- **Sol.** As AC and BD are the diagonals of a cyclic quadrilateral.

∴ ∠ADC, ∠BAD, ∠ABC and ∠BCD are angles in a semicircle. Hence, each angle is 90°.

As in a quadrilateral each angle is 90°, hence quadrilateral is a rectangle.

- 8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
- **Sol. Construction:** Draw DL and CM perpendi-culars to AB.

Proof: In $\triangle DLA$ and $\triangle CMB$,

$$DL = CM$$

[Distance between parallel lines]

$$AD = BC$$

[Given]

[90° each] [Construction]

$$\therefore$$
 $\triangle DLA \cong \triangle CMB$

[RHS]

...(*i*) [CPCT]

Now, AB || CD and AD is transversal

$$\therefore$$
 $\angle CDA + \angle DAL = 180^{\circ}$

$$\Rightarrow$$
 \angle CDA + \angle CBM = 180°

[From (i)]

$$\Rightarrow$$
 \angle CDB + \angle CBA = 180°

[::
$$\angle CBM = \angle CBA$$
]

As sum of opposite angles of a quadrilateral is 180°, then it is cyclic.

Hence, ABCD is a cyclic quadrilateral.

9. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see figure). Prove that $\angle ACP = \angle QCD$.

$$\angle ACP = \angle ABP$$

...(i)

[Angles in the same segment of a circle are equal]

$$\angle QCD = \angle QBD$$
 ...(ii) [Reason same as above]

$$\angle$$
 ABP = \angle QBD ...(*iii*) [Vertically opposite angles]

From (i), (ii) and (iii), we get

$$\angle$$
 ACP = \angle QCD.

- 10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
- Sol. Construction: Join AD.

Proof: Let circle with AB as diameter meets BC at D.

Then $\angle ADB = 90^{\circ}$. [Angle in a semicircle]

Now $\angle ADB + \angle ADC = 180^{\circ}$ [Linear pair]

$$\therefore$$
 $\angle ADC = 90^{\circ}$

As we know angle in a semicircle is 90°, therefore, a circle with AC as diameter passes through D.

B

Hence both the circles meet the third side at D.

- **11.** ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.
- **Sol.** \angle ABC = \angle ADC = 90°
 - : ACDB is a cyclic quadrilateral.

[As if a line segment subtends equal angles at two other points on the same side of the segment, then the four points are concyclic.]

$$\therefore$$
 \angle CAD = \angle CBD.

[Angles in the same segment of a circle are equal.]

- 12. Prove that a cyclic parallelogram is a rectangle.
- **Sol.** ABCD is a cyclic parallelogram.

$$\therefore \angle A + \angle C = 180^{\circ} \qquad \dots (i)$$

[Sum of opposite angles of a cyclic quadrilateral is 180°.]

Also,
$$\angle A = \angle C$$
 ...(ii)

[Opposite angles of a parallelogram]

From (i) and (ii), we have

$$2\angle A = 180^{\circ} \implies \angle A = 90^{\circ}$$

As in a parallelogram one angle is 90°, hence it is a rectangle.

