Exerise 8.2

1. ABCD is a quadrilateral in which P, Q, R and S are midpoints of the sides AB, BC, CD and DA (see figure). AC is a diagonal. Show that:

- (ii) PQ = SR
- (iii) PQRS is a parallelogram.
- Sol. (i) Consider triangle ACD,

S and R are mid-points of sides AD and DC respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(i)

[Line segment joining mid-points of two sides of a triangle is parallel to the third and half of it.]

(ii) Consider triangle ABC, P and Q are mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC ...(ii)

[Reason same as above]

From (i) and (ii),

$$SR \parallel AC \text{ and } PQ \parallel AC \Rightarrow SR \parallel PQ$$
 ...(iii)

and
$$SR = \frac{1}{2}AC$$
 and $PQ = \frac{1}{2}AC \implies SR = PQ$(*iv*)

- (iii) $SR \parallel PQ$ and SR = PQ.
- [From (iii) and (iv)]
- \Rightarrow PQRS is a parallelogram.
- 2. ABCD is a rhombus and P, Q, R and S are the midpoints of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- Sol. First prove that PQRS is a parallelogram.
 - (i) Consider triangle ACD,

S and R are mid-points of sides AD and DC respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(i)

[Line segment joining mid-points of two sides of a triangle is parallel to the third and half of it.]

(ii) Consider triangle ABC, P and Q are mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC ...(ii)

[Reason same as above]

From (i) and (ii),

$$SR \parallel AC \text{ and } PQ \parallel AC \Rightarrow SR \parallel PQ$$
 ...(iii)

and
$$SR = \frac{1}{2}AC$$
 and $PQ = \frac{1}{2}AC \implies SR = PQ$(iv)

(iii) $SR \parallel PQ$ and SR = PQ.

[From (iii) and (iv)]

 \Rightarrow PQRS is a parallelogram.

As PX || YO and PY || OX, PXOY is a parallelogram.

$$\Rightarrow \angle YPX = \angle YOX = 90^{\circ}$$

[:: Diagonals of a rhombus bisect each other and are at right angles.]

As in parallelogram PQRS, ∠SPQ is 90°.

- :. PQRS is a rectangle.
- **3.** ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- Sol. Construction: Join AC and BD.

As ABCD is a rectangle.

$$\therefore$$
 AC = BD ...(*i*)

Consider $\triangle ABC$, P and Q are midpoints of sides AB and BC respectively.

∴ PQ || AC and PQ =
$$\frac{1}{2}$$
 AC ...(ii)

Similarly, consider $\triangle ADC$, S and R are mid-points of sides AD and DC respectively.

$$\therefore \qquad \text{SR} \parallel \text{AC} \text{ and } \text{SR} = \frac{1}{2} \text{AC} \qquad \dots(iii)$$

From (ii) and (iii),

$$PQ = SR = \frac{1}{2}AC \qquad ...(iv)$$

Similarly, we can show

$$PS = QR = \frac{1}{2}BD \qquad ...(v)$$

From (i), (iv) and (v), we have PQ = QR = RS = SP

- .. PQRS is a rhombus.
- 4. ABCD is a trapezium in which AB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see figure). Show that F is the mid-point of BC.

Sol. Consider \triangle ADB, AB \parallel EF \Rightarrow AB \parallel EG.

 \Rightarrow G is mid-point of BD.

...(i)

[: A line drawn through mid-point of one side, parallel to other bisects the third side.]

Consider triangle BCD,

$$AB \parallel CD$$
 and $EF \parallel AB$

$$\Rightarrow$$
 EF || CD \Rightarrow GF || CD

 \Rightarrow F is mid-point of BC.

[Reason same as above]

5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see figure). Show that the line segments AF and EC trisect the diagonal BD.

Sol. AB = CD
$$\Rightarrow$$
 $\frac{1}{2}$ AB = $\frac{1}{2}$ CD

$$\Rightarrow$$
 AE = CF

As
$$AE = CF$$
 and $AE \parallel CF$

∵ AB || CD]

⇒ AECF is a parallelogram.

$$\Rightarrow$$
 AP \parallel CE

...(i)

Consider triangle ABP,

E is mid-point of AB and EQ || AP

[From (i)]

⇒ Q is mid-point of BP [A line segment drawn through mid-point of one side of a triangle and parallel to other, bisects the third side.]

$$BQ = PQ$$
 ...(ii)

Similarly, by considering triangle DCQ and proceeding as above, we can show that

$$DP = PQ$$
 ...(iii)

$$\Rightarrow$$
 BQ = PQ = DP

[From (ii) and (iii)]

 \Rightarrow P and Q trisect BD.

- **6.** Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
- **Sol.** (i) Consider triangle ACD,

S and R are mid-points of sides AD and DC respectively.

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(i)

[Line segment joining mid-points of two sides of a triangle is parallel to the third and half of it.]

(ii) Consider triangle ABC, P and Q are mid-points of sides AB and BC respectively.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC ...(ii)

[Reason same as above]

From (i) and (ii),

$$SR \parallel AC \text{ and } PQ \parallel AC \Rightarrow SR \parallel PQ$$
 ...(iii)

and
$$SR = \frac{1}{2}AC$$
 and $PQ = \frac{1}{2}AC \Rightarrow SR = PQ$(iv)

(iii)
$$SR \parallel PQ$$
 and $SR = PQ$. [From (iii) and (iv)] $\Rightarrow PQRS$ is a parallelogram.

We know that diagonals of a parallelogram bisect each other, *i.e.*, OP = OR and OQ = OS.

Hence, line segments joining midpoints of opposite sides of a quadrilateral bisect each other.

- 7. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
 - (i) D is the mid-point of AC
 - (ii) $MD \perp AC$

$$(iii) CM = MA = \frac{1}{2}AB.$$

Sol. (i) MD \parallel BC, meets AC at D.

 \therefore D is mid-point of AC.

[A line through the mid-point of a side of a triangle parallel to other bisects and third side.]

(ii) MD || BC and AC is transversal.

$$\therefore$$
 \angle ADM = \angle ACB

[Corresponding angles]

$$\Rightarrow$$
 $\angle ADM = 90^{\circ}$

[:: $\angle ACB = 90^{\circ}$]

$$\Rightarrow$$
 MD \perp AC.

(iii) Consider triangles ADM and CDM,

$$AD = DC$$

[From result (i)]

MD is common.

$$\angle ADM = \angle CDM$$

 $\angle ADM = \angle CDM$ [90° each] [From result (ii)]

$$\therefore \quad \Delta \text{ ADM } \cong \Delta \text{ CDM}$$

[SAS]

$$\therefore \qquad MA = CM = \frac{1}{2}AB.$$

[:: M is mid-point of AB)]