Exerise 6.1

1. In figure given below, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

Sol. Ray OE stands on line AB.

$$\therefore$$
 $\angle AOE + \angle EOB = 180^{\circ}$

[Linear pair]

$$\Rightarrow (\angle AOC + \angle COE)$$

$$+ \angle EOB = 180^{\circ}$$

$$\Rightarrow (\angle AOC + \angle EOB) + \angle COE = 180^{\circ}$$

$$\Rightarrow$$
 70° + \angle COE = 180°

 \Rightarrow

[:
$$\angle AOC + \angle BOE = 70^{\circ} \text{ (given)}]$$

$$\angle \text{COE} = 110^{\circ}$$
 ...(ii)

$$\therefore$$
 Reflex \angle COE = 360° - \angle COE = 360° - 110° = 250°.

Also,
$$\angle AOC = \angle BOD = 40^{\circ}$$
 ...(iii)

[Vertically opposite angles]

40°

...(i)

From (i), (ii), (iii), we get

$$40^{\circ} + 110^{\circ} + \angle BOE = 180^{\circ}$$

$$\Rightarrow$$
 \angle BOE = $180^{\circ} - 150^{\circ} = 30^{\circ}$.

2. In figure given below, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a:b=2:3, find c.

Sol. Ray OP stands on line XY.

$$\therefore$$
 $\angle XOP + \angle POY = 180^{\circ}$

[Linear pair] X

$$\Rightarrow$$
 $\angle XOP + 90^{\circ} = 180^{\circ}$

$$\Rightarrow$$
 $\angle XOP = 90^{\circ}$

$$\Rightarrow \angle XOM + \angle MOP + = 90^{\circ}$$

$$\Rightarrow b + a = 90^{\circ} \qquad \dots(i)$$

Also,
$$a:b=2:3 \Rightarrow \frac{a}{b}=\frac{2}{3} \Rightarrow a=\frac{2b}{3}$$
 ...(ii)

$$\Rightarrow b + \frac{2b}{3} = 90^{\circ} \Rightarrow \frac{5b}{3} = 90^{\circ}$$
 [From (i), (ii)]

$$\Rightarrow \qquad b = 54^{\circ} \qquad \dots(iii)$$

From (i), we get

$$54^{\circ} + a = 90^{\circ} \implies a = 36^{\circ}$$

$$\angle NOY = \angle XOM$$

[Vertically opposite angles]

$$\Rightarrow$$
 $\angle NOY = b = 54^{\circ}$

...(iv) [From (iii)]

 $L^{\prime}N$

Ray NO stands on line XY.

$$\therefore$$
 \angle XON + \angle NOY = 180°

[Linear pair]

$$\Rightarrow$$
 $c + 54^{\circ} = 180^{\circ}$

[From (iv)]

$$\Rightarrow$$
 $c = 180^{\circ} - 54^{\circ} = 126^{\circ}$

$$\therefore$$
 $a = 36^{\circ}, b = 54^{\circ}, c = 126^{\circ}.$

3. In the given figure, $\angle PQR = \angle PRQ$, then prove that $\angle PQS = \angle PRT$.

$$\angle PQR = \angle PRQ$$

...(*i*) [**G**iven]

Line segment PQ stands on ST.

$$\therefore$$
 $\angle PQS + \angle PQR = 180^{\circ}$

...(ii) [Linear pair]

Line segment PR stands on ST.

$$\therefore$$
 $\angle PRQ + \angle PRT = 180^{\circ}$

...(iii) [Linear pair]

From (ii) and (iii), we get

$$\angle PQS + \angle PQR = \angle PRQ + \angle PRT$$

$$\Rightarrow$$

$$\angle PQS = \angle PRT$$
.

[Using (i)]

4. In figure given below, if x + y = w + z, then prove that AOB is a line.

Sol. We have
$$x + y + z + w = 360^{\circ}$$

...(i)

Also

$$x + y = z + w$$

...(ii) [Given]

$$\therefore (x+y) + (x+y) = 360^{\circ}$$

[From (i), (ii)]

$$\Rightarrow \qquad 2(x+y) = 360^{\circ}$$

$$\Rightarrow$$
 $x + y = 180^{\circ}$

...(iii)

As ray CO stands on line AB, such that

$$x + y = 180^{\circ}$$

[From (iii)]

Hence, AOB is a straight line.

5. In the adjoining figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$$

Sol. Ray OR is perpendicular to line PQ.

: Also ray OS stands on line PQ.

∴
$$\angle POS + \angle QOS = 180^{\circ}$$
 [Linear pair]
⇒ $\angle POS + \angle QOS = 2\angle POR$ [From (ii)]
⇒ $\angle POS + \angle QOS = 2(\angle POS + \angle ROS)$

$$\Rightarrow \angle POS + \angle QOS = 2\angle POS + 2\angle ROS$$

$$\Rightarrow \qquad 2\angle ROS = \angle QOS - \angle POS$$

$$\Rightarrow$$
 $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$

- **6.** It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$.
- Sol. Ray YQ bisects ∠PYZ.

$$\therefore \frac{1}{2} \angle PYZ = \angle PYQ = \angle QYZ \dots(i)$$

Ray YZ stands on line PX.

$$\Rightarrow 2\angle PYQ = 180^{\circ} - 64^{\circ} = 116^{\circ}$$

$$\Rightarrow \angle PYQ = 58^{\circ} \qquad ...(ii)$$

:. Reflex
$$\angle QYP = 360^{\circ} - \angle PYQ = 360^{\circ} - 58^{\circ} = 302^{\circ}$$
.
Also $\angle XYQ = \angle XYZ + \angle QYZ = 64^{\circ} + 58^{\circ} = 122^{\circ}$.
[From (i), (ii)]