Exerise 2.2

1. Find the value of the polynomial
$$5x - 4x^2 + 3$$
 at

(i)
$$x = 0$$
 (ii) $x = -1$ (iii) $x = 2$

Sol. Let
$$f(x) = 5x - 4x^2 + 3$$
.
(i) $f(0) = 0 - 0 + 3 = 3$ (ii) $f(-1) = -5 - 4 + 3 = -6$
(iii) $f(2) = 10 - 16 + 3 = -3$.

2. Find
$$p(0)$$
, $p(1)$ and $p(2)$ for each of the following polynomials:

(i)
$$p(y) = y^2 - y + 1$$
 (ii) $p(t) = 2 + t + 2t^2 - t^3$ (iv) $p(x) = x^3$ (iv) $p(x) = (x - 1)(x + 1)$.

$$p(2) = 4 - 2 + 1 = 3.$$

$$(ii) \ p(0) = 2 + 0 + 0 - 0 = 2; \ p(1) = 2 + 1 + 2 - 1 = 4;$$

$$p(2) = 2 + 2 + 8 - 8 = 4.$$

Sol. (*i*) p(0) = 0 - 0 + 1 = 1; p(1) = 1 - 1 + 1 = 1;

(v) $p(x) = x^2$, x = 0

(iii)
$$p(0) = 0$$
; $p(1) = 1$; $p(2) = 8$.
(iv) $p(0) = (0 - 1)(0 + 1) = -1$; $p(1) = (1 - 1)(1 + 1) = 0$; $p(2) = (2 - 1)(2 + 1) = 3$.

(i)
$$p(x) = 3x + 1$$
, $x = -\frac{1}{3}$ (ii) $p(x) = 5x - \pi$, $x = \frac{4}{5}$ (iii) $p(x) = x^2 - 1$, $x = 1$, -1 (iv) $p(x) = (x + 1)(x - 2)$, $x = -1$, 2

(vi) $p(x) = lx + m, x = -\frac{m}{l}$

(vii)
$$p(x) = 3x^2 - 1$$
, $x = -\frac{1}{\sqrt{3}}$, $\frac{2}{\sqrt{3}}$

(viii)
$$p(x) = 2x + 1$$
, $x = \frac{1}{2}$.

Sol. (i)
$$p\left(-\frac{1}{3}\right) = 3 \times \left(-\frac{1}{3}\right) + 1 = -1 + 1 = 0$$

Hence, $x = -\frac{1}{3}$ is a zero of the polynomial p(x).

(ii)
$$p\left(\frac{4}{5}\right) = 5 \times \frac{4}{5} - \pi = 4 - \pi \neq 0$$

Hence, $x = \frac{4}{5}$ is not a zero of the polynomial p(x).

(iii) p(1) = 1 - 1 = 0 and p(-1) = 1 - 1 = 0Hence, x = 1 and x = -1 are zeroes of the polynomial p(x).

(iv)
$$p(-1) = (-1 + 1)(-1 - 2) = 0$$
 and $p(2)$
= $(2 + 1)(2 - 2) = 0$

Hence, x = -1 and x = 2 are zeroes of the polynomial p(x).

(v) p(0) = 0. Hence, x = 0 is a zero of the polynomial p(x).

$$(vi) p\left(-\frac{m}{l}\right) = l \cdot \left(-\frac{m}{l}\right) + m = -m + m = 0$$

Hence, $x = -\frac{m}{l}$ is a zero of the polynomial p(x).

(vii)
$$p\left(-\frac{1}{\sqrt{3}}\right) = 3 \times \frac{1}{3} - 1 = 1 - 1 = 0$$

and $p\left(\frac{2}{\sqrt{3}}\right) = 3 \times \frac{4}{3} - 1 = 4 - 1 = 3 \neq 0$

Hence, $x = -\frac{1}{\sqrt{3}}$ is a zero and $x = \frac{2}{\sqrt{3}}$ is not a zero of the polynomial p(x).

(viii)
$$p\left(\frac{1}{2}\right) = 2 \times \frac{1}{2} + 1 = 1 + 1 = 2 \neq 0$$

Hence, $x = \frac{1}{2}$ is not a zero of the polynomial p(x).

- **4.** Find the zero of the polynomial in each of the following cases:
 - (i) p(x) = x + 5 (ii) p(x) = x 5 (iii) p(x) = 2x + 5
 - (iv) p(x) = 3x 2 (v) p(x) = 3x (vi) p(x) = ax, $a \neq 0$
 - (vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.
- **Sol.** (i) For zero, $p(x) = 0 \implies x + 5 = 0$ $\implies x = -5$ is a zero of the polynomial p(x).
 - (ii) For zero, $p(x) = 0 \implies x 5 = 0$ $\implies x = 5$ is a zero of the polynomial p(x).
 - (iii) For zero, $p(x) = 0 \implies 2x + 5 = 0$

 \Rightarrow $x = -\frac{5}{2}$ is a zero of the polynomial p(x).

(iv) For zero, $p(x) = 0 \implies 3x - 2 = 0$

 \Rightarrow $x = \frac{2}{3}$ is a zero of the polynomial p(x).

- (v) For zero, $p(x) = 0 \implies 3x = 0$ $\implies x = 0$ is a zero of the polynomial p(x).
- (vi) For zero, $p(x) = 0 \implies ax = 0$ $\Rightarrow x = 0$, as $a \neq 0$

Therefore, x = 0 is a zero of the polynomial p(x).

(vii) For zero, $p(x) = 0 \implies cx + d = 0$

$$\Rightarrow x = -\frac{d}{c}, (c \neq 0)$$

Therefore, $x = -\frac{d}{c}$ is a zero of the polynomial p(x).