Exerise 2.1

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$
 (ii) $y^2 + \sqrt{2}$ (iii) $3\sqrt{t} + t\sqrt{2}$

(iv)
$$y + \frac{2}{y}$$
 (v) $x^{10} + y^3 + t^{50}$.

- **Sol.** (*i*) $4x^2 3x + 7$ is a polynomial in variable x, as exponents of the variable in different terms are whole numbers.
 - (ii) $y^2 + \sqrt{2}$ is a polynomial in variable y, as exponent of variable y is a whole number.

- (iii) $3\sqrt{t} + t\sqrt{2} = 3t^{1/2} + \sqrt{2}t$ is not a polynomial, as exponent of variable t in first term, i.e., $3 t^{1/2}$ is not a whole number.
- (iv) $y + \frac{2}{y} = y + 2y^{-1}$ is not a polynomial, as exponent of the variable y in the term $2y^{-1}$ is not a whole number.
- (v) $x^{10} + y^3 + t^{50}$ is a polynomial in three variables.
- **2.** Write the coefficient of x^2 in each of the following:

$$(i) 2 + x^2 + x$$

(i)
$$2 + x^2 + x$$
 (ii) $2 - x^2 + x^3$ (iii) $\frac{\pi}{2}x^2 + x$

$$(iii) \quad \frac{\pi}{2}x^2 + x$$

- (iv) $\sqrt{2} x 1$.
- **Sol.** (i) Coefficient of x^2 in $2 + x^2 + x$ is 1.
 - (ii) Coefficient of x^2 in $2 x^2 + x^3$ is -1.
 - (iii) Coefficient of x^2 in $\frac{\pi}{2}x^2 + x$ is $\frac{\pi}{2}$.
 - (iv) Coefficient of x^2 in $\sqrt{2}x 1$ is 0.
 - **3.** Give one example each of a binomial of degree 35, and of a monomial of degree 100.
- **Sol.** (*i*) Binomial of degree 35 is $2x^{35} + x$.
 - (ii) Monomial of degree 100 is $-7x^{100}$
 - **4.** Write the degree of each of the following polynomials:

(i)
$$5x^3 + 4x^2 + 7x$$

(ii)
$$4 - y^2$$

(iii)
$$5t - \sqrt{7}$$

$$(iv)$$
 3.

- **Sol.** (i) Degree of polynomial $5x^3 + 4x^2 + 7x$ is 3.
 - (ii) Degree of polynomial $4 y^2$ is 2.
 - (iii) Degree of polynomial $5t \sqrt{7}$ is 1.
 - (iv) Degree of polynomial 3 is 0.
 - **5.** Classify the following as linear, quadratic and cubic polynomials:

(i)
$$x^2 + x$$

$$(ii) x - x^3$$

(ii)
$$x - x^3$$
 (iii) $y + y^2 + 4$

- (iv) 1 + x (v) 3t $(vi) r^2$
- (vii) $7x^3$.
- **Sol.** (i) Polynomial $x^2 + x$ is a quadratic polynomial.
 - (ii) Polynomial $x x^3$ is a cubic polynomial.
 - (iii) Polynomial $y + y^2 + 4$ is a quadratic polynomial.
 - (iv) Polynomial 1 + x is a linear polynomial.
 - (v) Polynomial 3t is a linear polynomial.
 - (vi) Polynomial r^2 is a quadratic polynomial.
 - (vii) Polynomial $7x^3$ is a cubic polynomial.