Exercise 11.4

Assume $\pi = \frac{22}{7}$, unless stated otherwise.

- **1.** Find the volume of a sphere whose radius is
 - (i) 7 cm

- (ii) $0.63 \, m$.
- Radius (r) = 7 cm **Sol.** (i)

: Volume =
$$\frac{4}{3}\pi r^3 = \frac{4}{3} \times \frac{22}{7} \times (7)^3 \text{ cm}^3$$

$$= 1437 \frac{1}{3} \text{ cm}^3.$$

(ii) Volume =
$$\frac{4}{3} \times \frac{22}{7} \times (0.63)^3 \text{ cm}^3$$

$$= 1.05 \text{ m}^3 \text{ (approx.)}.$$

- 2. Find the amount of water displaced by a solid spherical ball of diameter
- (i) $28 \ cm$ (ii) $0.21 \, m$.
- **Sol.** Volume of water displaced = Volume of solid spherical ball.
 - (i) Diameter = 28 cm \Rightarrow Radius = 14 cm.

$$\therefore$$
 Volume of water displaced = $\frac{4}{3} \times \frac{22}{7} \times (14)^3 \text{ cm}^3$

$$= 11498 \frac{2}{3} \text{ cm}^3.$$

(ii) Diameter =
$$0.21 \text{ m} \Rightarrow \text{Radius} = 0.105 \text{ m}$$
.

$$\therefore \text{ Volume of water displaced} = \frac{4}{3} \times \frac{22}{7} \times (0.105)^3 \text{ cm}^3$$
$$= 0.004851 \text{ m}^3.$$

- **3.** The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm^3 ?
- **Sol.** Diameter of the ball = 4.2 cm.
 - \Rightarrow Radius of the ball = 2.1 cm.

Volume of the ball =
$$\frac{4}{3} \times \frac{22}{7} \times (2.1)^3 \text{ cm}^3 = 38.808 \text{ cm}^3$$
.

- **4.** The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?
- **Sol.** Let diameter of the earth = d units.

$$\Rightarrow$$
 Radius of the earth = $\frac{d}{2}$ units.

Diameter of the moon =
$$\frac{d}{4}$$
 units.

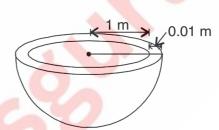
$$\Rightarrow$$
 Radius of the moon = $\frac{d}{8}$ units.

$$\frac{\text{Volume of the earth}}{\text{Volume of the moon}} = \frac{\frac{4}{3}\pi\left(\frac{d}{2}\right)^3}{\frac{4}{3}\pi\left(\frac{d}{8}\right)^3} = 64.$$

Volume of the moon = $\frac{1}{64}$ volume of the earth.

Hence, the volume of the moon is $\frac{1}{64}$ of the volume of the earth.

5. How many litres milk can a hemispherical bowl of diameter 10.5 cm hold?


Sol. Volume of the hemisphere =
$$\frac{2}{3} \times \frac{22}{7} \times (5.25)^3 \text{ cm}^3$$

= 303.19 cm³

So, the capacity of the bowl =
$$\frac{303.19}{1000} l$$

= 0.303 l (approx.)

= 1 cm = 0.01 m

6. A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius is 1 m, then find the volume of the iron used to make the tank.

Volume of iron used

$$= \frac{2}{3} \times \frac{22}{7} \times \{(1.01)^3 - (1)^3\} \text{ m}^3$$

$$= \frac{44}{21} \times \{1.0303 - 1\} \text{ m}^3 = \frac{44}{21} \times 0.0303 \text{ m}^3$$

$$= 0.06348 \text{ m}^3 \text{ (approx.)}$$

7. Find the volume of a sphere whose surface area is 154 cm^2 .

Sol. Surface area =
$$154 \text{ cm}^2$$

$$\Rightarrow 4 \times \frac{22}{7} \times r^2 = 154 \Rightarrow r^2 = \frac{154 \times 7}{88} = 12.25$$

$$\Rightarrow r = 3.5 \text{ cm}.$$

Volume of the sphere =
$$\frac{4}{3} \times \frac{22}{7} \times (3.5)^3 \text{ cm}^3 = 179 \frac{2}{3} \text{ cm}^3$$
.

8. A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹498.96. If the cost of white-washing is ₹2.00 per square metre, find the

- (i) inside surface area of the dome,
- (ii) volume of the air inside the dome.
- **Sol.** Cost of white washing = 7498.96.

Rate of white-washing = ₹ 2 per sq. m.

- (i) Inside surface area = $\frac{498.96}{2}$ m² = 249.48 m².
- (ii) We have $2 \times \frac{22}{7} \times r^2 = 249.48$

$$\Rightarrow r^2 = \frac{249.48 \times 7}{44} = 39.69 \Rightarrow r = 6.3 \text{ m}$$

 \therefore Volume of the dome = $\frac{2}{3}\pi r^3$

$$= \frac{2}{3} \times \frac{22}{7} \times (6.3)^3 \text{ m}^3$$

 $= 523.90 \text{ m}^3 \text{ (approx.)}.$

- **9.** Twenty seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S'. Find the
 - (i) radius r' of the new sphere, (ii) ratio of S and S'.
- **Sol.** Total volume of 27 sphere = $27 \times \frac{4}{3}\pi r^3 = 36\pi r^3$
 - (i) Volume of a new sphere = $\frac{4}{3}\pi r'^3$...(i)

$$\frac{4}{3}\pi r'^3 = 27 \times \frac{4}{3}\pi r^3$$

$$\Rightarrow \qquad r'^3 = 27r^3 \Rightarrow r' = 3r$$

(ii) Surface area of each of 27 spheres (S) = $4\pi r^2$...(a) Surface area of a new sphere (S') = $4\pi (3r)^2 = 36\pi r^2$...(b)

From (a) and (b), we get

$$\frac{S}{S'} = \frac{4\pi r^2}{36\pi r^2} = \frac{1}{9}$$

Hence, S : S' = 1 : 9.

10. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm. How much medicine (in mm³) is needed to fill this capsule?

Sol. : Diameter (d) = 3.5 mm

:. Radius
$$(r) = \frac{3.5}{2} = 1.75 \text{ mm}$$

Medicine needed = Volume of capsule = $\frac{4}{3}\pi r^3$

=
$$\frac{4}{3} \times \frac{22}{7} \times (1.75)^3$$

m= 22.46 mm3
(approx.). m³