Assume
$$\pi = \frac{22}{7}$$
, unless stated otherwise.

- 1. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.
- **Sol.** Curved surface area = $\pi rl = \frac{22}{7} \times \frac{10.5}{2} \times 10 \text{ cm}^2$ = 165 cm².
 - 2. Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m.
- **Sol.** Total surface area = $\pi r l + \pi r^2 = \pi r (l + r)$

$$= \frac{22}{7} \times 12 \times (21 + 12) \text{ cm}^2$$
$$= 1244.57 \text{ m}^2.$$

- **3.** Curved surface area of a cone is 308 cm² and its slant height is 14 cm. Find
 - (i) radius of the base and

(ii) total surface area of the cone.

Sol. (*i*) Given:
$$\pi r l = 308 \implies \frac{22}{7} \times r \times 14 = 308$$

$$\Rightarrow \qquad r = \frac{308}{44} = 7 \text{ cm}$$

 \therefore Radius of the base = 7 cm.

(ii) Total surface area = $\pi rl + \pi r^2$

$$= 308 + \frac{22}{7} \times (7)^2 = 462 \text{ cm}^2.$$

- **4.** A conical tent is 10 m high and the radius of its base is 24 m. Find
 - (i) slant height of the tent.
 - (ii) cost of the canvas required to make the tent, if the cost of 1 m² canvas is ₹70.
- **Sol.** Base radius = 24 m, height = 10 m.

(i) Slant height =
$$\sqrt{(24)^2 + (10)^2}$$
 m = $\sqrt{576 + 100}$ m = $\sqrt{676}$ m = 26 m.

(ii) Total canvas required =
$$\pi rl = \frac{22}{7} \times 24 \times 26 \text{ m}^2$$

$$\therefore \quad \mathbf{Cost} = \mathbf{0} \left(70 \times \frac{22}{7} \times 24 \times 26 \right) = \mathbf{0} \quad \mathbf{137280}.$$

- 5. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm. (Use $\pi = 3.14$).
- **Sol.** Slant height of the tent = $\sqrt{(6)^2 + (8)^2}$ m = $\sqrt{36 + 64}$ m = 10 m.

Area of tarpaulin required = πrl = 3.14 × 6 × 10 m² = 188.4 m².

∴ Length of tarpaulin required =
$$\frac{188.4}{3}$$
 = 62.8 m.

Total length required including wastage = (62.8 + 0.2) m = 63 m.

6. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of whitewashing its curved surface at the rate of ₹210 per 100 m^2 .

Sol. Curved surface area =
$$\pi rl = \frac{22}{7} \times 7 \times 25 \text{ m}^2 = 550 \text{ m}^2$$
.

Cost of white-washing =
$$\neq$$
 $\left(210 \times \frac{550}{100}\right) = \neq 1155$.

- 7. A joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.
- **Sol.** Slant height of joker's cap

=
$$\sqrt{(24)^2 + (7)^2}$$
 cm
= $\sqrt{576 + 49}$ cm
= $\sqrt{625}$ cm = 25 cm.

∴ Area of sheet required for 10 caps

=
$$10 \times \pi rl$$
 = $10 \times \frac{22}{7} \times 7 \times 25$ cm² = 5500 cm².

8. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each one has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is $\gtrless 12$ per m^2 , what will be the cost of painting all these cones? (Use $\pi = 3.14$ and take $\sqrt{1.04} = 1.02$.)

Sol. Slant height of each cone
$$(l) = \sqrt{(1)^2 + (0.2)^2}$$
 m

$$= \sqrt{1.04}$$
 m = 1.02 m.

:. Area to be painted for 50 hollow cones

