Exerise 1.2

- 1. State whether the following statements are true or false. Justify your answers.
 - (i) Every irrational number is a real number.
 - (ii) Every point on the number line is of the form \sqrt{m} , where m is a natural number.
 - (iii) Every real number is an irrational number.
- Sol. (i) True, as real numbers consist of rational and irrational numbers.
 - (ii) False, as $\frac{3}{2}$ on the number line cannot be a square root of a natural number.
 - Also, a negative number cannot be a square root of natural number, as \sqrt{m} represents a positive value.
 - (iii) False, as 2 is a real number but not an irrational number.
 - 2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.
- **Sol.** No. For example, $\sqrt{9} = 3$, $\sqrt{16} = 4$, etc., 3, 4 are rational numbers.

- **3.** Show how $\sqrt{5}$ can be represented on the number line.
- **Sol.** For $\sqrt{5}$, we have $5 = 5 \times 1$. On a number line, take O at position 0 and OA = 5 and OB = 1. With AB as diameter draw a semicircle. Draw OP \(\pm \) AB meeting semicircle at P. With O as centre and OP as radius an arc is drawn meeting the number line at Q.

Then, $OQ = OP = \sqrt{5}$ and Q represents $\sqrt{5}$ on the number line.

4. Classroom activity (Constructing the 'square root spiral'): Take a large sheet of paper and construct the 'square root spiral' in the following fashion. Start with a point O and draw a line segment OP₁ of unit length. Draw a line segment P_1P_2 perpendicular to OP_1 of unit length (see Figure).

root spiral

Now, draw a line segment P_2P_3 perpendicular to OP_2 of unit length. Then, draw a line segment P_3P_4 perpendicular to OP_3 of unit length. Continuing in this manner, you can get the line segment $P_{n-1}P_n$ by drawing a line segment of unit length perpendicular to OP_{n-1} . In this manner, you will have created the points P_2 , P_3 ,, P_n ,, and joined them to create a beautiful spiral depicting $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$,

Sol.

