Exercise 7.2

Question 1:

Find the coordinates of the point which divides the join of (-1, 7) and (4, -3) in the ratio 2:3.

Answer:

Let P(x, y) be the required point. Using the section formula, we obtain

 $x = \frac{2 \times 4 + 3 \times (-1)}{2 + 3} = \frac{8 - 3}{5} = \frac{5}{5} = 1$

$$y = \frac{2 \times (-3) + 3 \times 7}{2 + 3} = \frac{-6 + 21}{5} = \frac{15}{5} = 3$$

Therefore, the point is (1, 3).

Question 2:

Find the coordinates of the points of trisection of the line segment joining (4, -1) and (-2, -3).

Answer:

Let P (x_1 , y_1) and Q (x_2 , y_2) are the points of trisection of the line segment joining the given points i.e., AP = PQ = QB

Therefore, point P divides AB internally in the ratio 1:2.

$$x_{1} = \frac{1 \times (-2) + 2 \times 4}{1 + 2}, \quad y_{1} = \frac{1 \times (-3) + 2 \times (-1)}{1 + 2}$$
$$x_{1} = \frac{-2 + 8}{3} = \frac{6}{3} = 2, \quad y_{1} = \frac{-3 - 2}{3} = \frac{-5}{3}$$
Therefore, $P(x_{1}, y_{1}) = \left(2, -\frac{5}{3}\right)$

Point Q divides AB internally in the ratio 2:1.

$$x_{2} = \frac{2 \times (-2) + 1 \times 4}{2 + 1}, \quad y_{2} = \frac{2 \times (-3) + 1 \times (-1)}{2 + 1}$$
$$x_{2} = \frac{-4 + 4}{3} = 0, \qquad y_{2} = \frac{-6 - 1}{3} = \frac{-7}{3}$$
$$Q(x_{2}, y_{2}) = \left(0, -\frac{7}{3}\right)$$

Question 3:

To conduct Sports Day activities, in your rectangular shaped school ground ABCD, lines have been drawn with chalk powder at a distance of 1 m each. 100 flower pots have been placed at a distance of 1 m from each other along AD, as shown in the following

figure. Niharika runs $\frac{1}{4}$ th the distance AD on the 2nd line and posts a green flag. Preet

runs $\frac{1}{5}$ th the distance AD on the eighth line and posts a red flag. What is the distance between both the flags? If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?

Answer:

It can be observed that Niharika posted the green flag at $\frac{4}{4}$ of the distance AD i.e.,

 $\left(\frac{1}{4} \times 100\right)$ m = 25 m from the starting point of 2nd line. Therefore, the coordinates of this point G is (2, 25).

1

Similarly, Preet posted red flag at $\frac{1}{5}$ of the distance AD i.e., $\left(\frac{1}{5} \times 100\right) m = 20$ m from the starting point of 8th line. Therefore, the coordinates of this point R are (8, 20).

Distance between these flags by using distance formula = GR

$$= \sqrt{\left(8-2\right)^2 + \left(25-20\right)^2} = \sqrt{36+25} = \sqrt{61} \text{ m}$$

The point at which Rashmi should post her blue flag is the mid-point of the line joining these points. Let this point be A(x, y).

$$x = \frac{2+8}{2}, \quad y = \frac{25+20}{2}$$
$$x = \frac{10}{2} = 5, \quad y = \frac{45}{2} = 22.5$$
Hence, A(x, y) = (5, 22.5)

Therefore, Rashmi should post her blue flag at 22.5m on 5th line.

Question 4:

Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).

Answer:

Let the ratio in which the line segment joining (-3, 10) and (6, -8) is divided by point (-1, 6) be k : 1.

Therefore, $-1 = \frac{6k-3}{k+1}$ -k-1 = 6k-37k = 2 $k = \frac{2}{7}$

Therefore, the required ratio is 2:7.

Question 5:

Find the ratio in which the line segment joining A (1, -5) and B (-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.

Answer:

Let the ratio in which the line segment joining A (1, -5) and B (-4, 5) is divided by x-axisbe k:1.

Therefore, the coordinates of the point of division is $\left(\frac{-4k+1}{k+1}, \frac{5k-5}{k+1}\right)$.

We know that y-coordinate of any point on x-axis is 0.

 $\therefore \frac{5k-5}{k+1} = 0$ k = 1

Therefore, x-axis divides it in the ratio 1:1.

Division point =
$$\left(\frac{-4(1)+1}{1+1}, \frac{5(1)-5}{1+1}\right) = \left(\frac{-4+1}{2}, \frac{5-5}{2}\right) = \left(\frac{-3}{2}, 0\right)$$

Question 6:

If (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.

Answer:

Let (1, 2), (4, y), (x, 6), and (3, 5) are the coordinates of A, B, C, D vertices of a parallelogram ABCD. Intersection point O of diagonal AC and BD also divides these diagonals.

Therefore, O is the mid-point of AC and BD.

If O is the mid-point of AC, then the coordinates of O are

 $\left(\frac{1+x}{2},\frac{2+6}{2}\right) \Rightarrow \left(\frac{x+1}{2},4\right)$

If O is the mid-point of BD, then the coordinates of O are

$$\left(\frac{4+3}{2},\frac{5+y}{2}\right) \Rightarrow \left(\frac{7}{2},\frac{5+y}{2}\right)$$

Since both the coordinates are of the same point O,

$$\therefore \frac{x+1}{2} = \frac{7}{2} \text{ and } 4 = \frac{5+y}{2}$$
$$\Rightarrow x+1 = 7 \text{ and } 5+y=8$$
$$\Rightarrow x=6 \text{ and } y=3$$

Question 7:

Find the coordinates of a point A, where AB is the diameter of circle whose centre is (2, - 3) and B is (1, 4)

Answer:

Let the coordinates of point A be (x, y).

Mid-point of AB is (2, -3), which is the center of the circle.

$$\therefore (2, -3) = \left(\frac{x+1}{2}, \frac{y+4}{2}\right)$$
$$\Rightarrow \frac{x+1}{2} = 2 \text{ and } \frac{y+4}{2} = -3$$
$$\Rightarrow x+1 = 4 \text{ and } y+4 = -6$$
$$\Rightarrow x = 3 \text{ and } y = -10$$
Therefore, the coordinates of A are (3, -10).

Question 8:

If A and B are (- 2, - 2) and (2, - 4), respectively, find the coordinates of P such that

$$AP = \frac{3}{7}AB$$
 and P lies on the line segment AB.

Answer:

The coordinates of point A and B are (-2, -2) and (2, -4) respectively.

$$AP = \frac{3}{7}AB$$
,

Therefore, AP: PB = 3:4

Point P divides the line segment AB in the ratio 3:4.

Coordinates of P =
$$\left(\frac{3 \times 2 + 4 \times (-2)}{3 + 4}, \frac{3 \times (-4) + 4 \times (-2)}{3 + 4}\right)$$

= $\left(\frac{6 - 8}{7}, \frac{-12 - 8}{7}\right)$
= $\left(-\frac{2}{7}, -\frac{20}{7}\right)$

Question 9:

Find the coordinates of the points which divide the line segment joining A (- 2, 2) and B (2, 8) into four equal parts.

Answer:

From the figure, it can be observed that points P, Q, R are dividing the line segment in a ratio 1:3, 1:1, 3:1 respectively.

Coordinates of P =
$$\left(\frac{1 \times 2 + 3 \times (-2)}{1+3}, \frac{1 \times 8 + 3 \times 2}{1+3}\right)$$

G = $\left(-1, \frac{7}{2}\right)$
Coordinates of Q = $\left(\frac{2 + (-2)}{2}, \frac{2 + 8}{2}\right)$
= (0,5)
Coordinates of R = $\left(\frac{3 \times 2 + 1 \times (-2)}{3+1}, \frac{3 \times 8 + 1 \times 2}{3+1}\right)$
= $\left(1, \frac{13}{2}\right)$

Question 10:

Find the area of a rhombus if its vertices are (3, 0), (4, 5), (-1, 4) and (-2, -1) taken in

order. [Hint: Area of a rhombus = $\frac{1}{2}$ (product of its diagonals)]

Answer:

Let (3, 0), (4, 5), (-1, 4) and (-2, -1) are the vertices A, B, C, D of a rhombus ABCD.

Length of diagonal AC = $\sqrt{[3-(-1)]^2 + (0-4)^2}$ = $\sqrt{16+16} = 4\sqrt{2}$ Length of diagonal BD = $\sqrt{[4-(-2)]^2 + [5-(-1)]^2}$ = $\sqrt{36+36} = 6\sqrt{2}$ Therefore, area of rhombus ABCD = $\frac{1}{2} \times 4\sqrt{2} \times 6\sqrt{2}$ = 24 square units