## Exercise 4.1

### **Question 1:**

Check whether the following are quadratic equations:

(i) 
$$(x+1)^2 = 2(x-3)$$

(ii) 
$$x^2 - 2x = (-2)(3-x)$$

(iii) 
$$(x-2)(x+1) = (x-1)(x+3)$$

(iv) 
$$(x-3)(2x+1) = x(x+5)$$

(v) 
$$(2x-1)(x-3)=(x+5)(x-1)$$

(vi) 
$$x^2 + 3x + 1 = (x-2)^2$$

(vii) 
$$(x+2)^3 = 2x(x^2-1)$$

(viii) 
$$x^3 - 4x^2 - x + 1 = (x-2)^3$$

#### Answer:

(i) 
$$(x+1)^2 = 2(x-3) \Rightarrow x^2 + 2x + 1 = 2x - 6 \Rightarrow x^2 + 7 = 0$$

It is of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is a quadratic equation.

(ii) 
$$x^2 - 2x = (-2)(3-x) \Rightarrow x^2 - 2x = -6 + 2x \Rightarrow x^2 - 4x + 6 = 0$$

It is of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is a quadratic equation.

(iii) 
$$(x-2)(x+1) = (x-1)(x+3) \Rightarrow x^2 - x - 2 = x^2 + 2x - 3 \Rightarrow 3x - 1 = 0$$

It is not of the form  $ax^2 + bx + c = 0$ .

Hence, the given equation is not a quadratic equation.

(iv) 
$$(x-3)(2x+1) = x(x+5) \Rightarrow 2x^2 - 5x - 3 = x^2 + 5x \Rightarrow x^2 - 10x - 3 = 0$$

It is of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is a quadratic equation.

(v) 
$$(2x-1)(x-3) = (x+5)(x-1) \Rightarrow 2x^2 - 7x + 3 = x^2 + 4x - 5 \Rightarrow x^2 - 11x + 8 = 0$$

It is of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is a quadratic equation.

(vi) 
$$x^2 + 3x + 1 = (x-2)^2 \Rightarrow x^2 + 3x + 1 = x^2 + 4 - 4x \Rightarrow 7x - 3 = 0$$

It is not of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is not a quadratic equation.

(vii) 
$$(x+2)^3 = 2x(x^2-1) \Rightarrow x^3+8+6x^2+12x=2x^3-2x \Rightarrow x^3-14x-6x^2-8=0$$

It is not of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is not a quadratic equation.

(viii) 
$$x^3 - 4x^3 - x + 1 = (x - 2)^3 \Rightarrow x^3 - 4x^2 - x + 1 = x^3 - 8 - 6x^2 + 12x \Rightarrow 2x^2 - 13x + 9 = 0$$
  
It is of the form  $ax^2 + bx + c = 0$ 

Hence, the given equation is a quadratic equation.

#### Question 2:

Represent the following situations in the form of quadratic equations.

- (i) The area of a rectangular plot is 528 m<sup>2</sup>. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- (ii) The product of two consecutive positive integers is 306. We need to find the integers.
- (iii) Rohan's mother is 26 years older than him. The product of their ages (in years) 3 years from now will be 360. We would like to find Rohan's present age.
- (iv) A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

#### Answer:

(i) Let the breadth of the plot be x m.

Hence, the length of the plot is (2x + 1) m.

Area of a rectangle = Length x Breadth

$$..528 = x(2x + 1)$$

$$\Rightarrow 2x^2 + x - 528 = 0$$

(ii) Let the consecutive integers be x and x + 1.

It is given that their product is 306.

$$x(x+1) = 306 \Rightarrow x^2 + x - 306 = 0$$

(iii) Let Rohan's age be x.

Hence, his mother's age = x + 26

3 years hence,

Rohan's age = x + 3

Mother's age = 
$$x + 26 + 3 = x + 29$$

It is given that the product of their ages after 3 years is 360.

$$(x+3)(x+29) = 360$$

$$\Rightarrow x^2 + 32x - 273 = 0$$

# (iv) Let speed of the train = x km/h

Total distance to be covered = 480 km

Time = 
$$\frac{\text{distance}}{\text{speed}} = \frac{480}{x}$$

Decreased speed of the train = (x - 8) km/h

Now, Time = 
$$\frac{480}{x-8}$$

According to question,

$$\frac{480}{x-8} - \frac{480}{x} = 3 \qquad \Rightarrow 480 \left[ \frac{1}{x-8} - \frac{1}{x} \right] = 3$$

$$\Rightarrow 480 \left[ \frac{x-x+8}{x(x-8)} \right] = 3 \qquad \Rightarrow 480 \times 8 = 3x (x-8)$$

$$\Rightarrow 3840 = 3x^2 - 24x \Rightarrow 3x^2 - 24x - 3840 = 0$$

$$\Rightarrow x^2 - 8x - 1280 = 0$$

Which is the required quadratic equation.