Exercise 8.1

1. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

The given equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = 4 \times Area of OAB

Area of OAB =
$$\int_0^4 y \, dx$$

= $\int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$
= $\frac{3}{4} \int_0^4 \sqrt{16 - x^2} \, dx$
= $\frac{3}{4} \left[\frac{x}{2} \sqrt{16 - 16} + 8 \sin^{-1}(1) - 0 - 8 \sin^{-1}(0) \right]$
= $\frac{3}{4} \left[\frac{8\pi}{2} \right]$
= $\frac{3}{4} \left[4\pi \right]$

Therefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units

2. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

The given equation of the ellipse can be represented as

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$\Rightarrow y = 3\sqrt{1 - \frac{x^2}{4}} \qquad \dots (1)$$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

: Area bounded by ellipse = 4 × Area OAB

$$\therefore \text{ Area of OAB} = \int_0^2 y \, dx$$

$$= \int_0^2 3\sqrt{1 - \frac{x^2}{4}} \, dx \qquad [Using (1)]$$

$$= \frac{3}{2} \int_0^2 \sqrt{4 - x^2} \, dx$$

$$= \frac{3}{2} \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-} \frac{x}{2} \right]_0^2$$

$$= \frac{3}{2} \left[\frac{2\pi}{2} \right]$$

$$= \frac{3\pi}{2}$$

Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ units

- 3. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

- (A) π (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

Answer

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as

$$\therefore \text{ Area OAB} = \int_0^2 y \, dx$$

$$= \int_0^2 \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$= 2 \left(\frac{\pi}{2} \right)$$

$$= \pi \text{ units}$$

Thus, the correct answer is A.

- 4. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is
 - (A) 2

- (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

Answer

The area bounded by the curve, $y^2 = 4x$, y-axis, and y = 3 is represented as

$$\therefore \text{ Area OAB} = \int_0^3 x \, dy$$

$$= \int_0^3 \frac{y^2}{4} \, dy$$

$$= \frac{1}{4} \left[\frac{y^3}{3} \right]_0^3$$

$$= \frac{1}{12} (27)$$

$$= \frac{9}{4} \text{ units}$$

Thus, the correct answer is B.