Exercise 4.4

Question 1:

Find adjoint of each of the matrices.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Answer

Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

We have,

$$A_{11} = 4, A_{12} = -3, A_{21} = -2, A_{22} = 1$$

$$\therefore adjA = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

Question 2:

Find adjoint of each of the matrices.

[1	-1	2
2	3	2 5 1
-2	0	1

Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$
.
We have,
 $A_{11} = \begin{vmatrix} 3 & 5 \\ 0 & 5 \\ -2 & 1 \end{vmatrix} = 3 - 0 = 3$
 $A_{12} = -\begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -(2 + 10) = -12$
 $A_{13} = \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 0 + 6 = 6$

$A_{21} = -\begin{vmatrix} -1\\0 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = -(-1-0) =$	=1	
$A_{22} = \begin{vmatrix} 1 \\ -2 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 1 \end{vmatrix} = 1 + 4 = 5$		
$A_{23} = -\begin{vmatrix} 1 \\ -2 \end{vmatrix}$	$\begin{vmatrix} -1 \\ 0 \end{vmatrix} = -(0-2)$	= 2	
$A_{31} = \begin{vmatrix} -1 \\ 3 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 5 \end{vmatrix} = -5 - 6 = -11$		
$A_{32} = -\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 5 \end{vmatrix} = -(5-4) =$	-1	
	$\begin{vmatrix} -1 \\ 3 \end{vmatrix} = 3 + 2 = 5$		
Hence, adjA	$= \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$	$\begin{bmatrix} A_{31} \\ A_{32} \\ A_{33} \end{bmatrix} = \begin{bmatrix} 3 \\ -12 \\ 6 \end{bmatrix}$	$ \begin{array}{ccc} 1 & -11 \\ 5 & -1 \\ 2 & 5 \end{array} $

Question 3:

Verify A(adj A) = (adj A) A = |A|I.

$$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

we have,
 $|A| = -12 - (-12) = -12 + 12 = 0$
 $\therefore |A| I = 0 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Now,
 $A_{11} = -6, A_{12} = 4, A_{21} = -3, A_{22} = 2$
 $\therefore adjA = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$
Now,
 $A(adjA) = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -12 + 12 & -6 + 6 \\ 24 - 24 & 12 - 12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Also, $(adjA) A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$
 $= \begin{bmatrix} -12 + 12 & -18 + 18 \\ 8 - 8 & 12 - 12 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Hence, $A(adjA) = (adjA) A = |A| I.$

Question 4:

Verify A (adj A) = (adj A) A = |A|I. $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$ Answer

[1	$^{-1}$	2]			
$A = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$	0	-2			
1	0	3			
A = 1(0 -	0)+1(9	+2)+2	2(0-0) = 11		
	1	0	0] [11	0	0
$\therefore A I = 11$	0	1	$\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 11 \\ 0 \\ 0 \end{bmatrix}$	11	0 0 11
	0	0	1 0	0	11

Now,

$$A_{11} = 0, A_{12} = -(9+2) = -11, A_{13} = 0$$

$$A_{21} = -(-3-0) = 3, A_{22} = 3-2 = 1, A_{23} = -(0+1) = -1$$

$$A_{31} = 2-0 = 2, A_{32} = -(-2-6) = 8, A_{33} = 0+3 = 3$$

$\therefore adjA = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$
Now,
$A(adiA) = \begin{vmatrix} 3 & 0 & -2 \end{vmatrix} -11 & 1 & 8 \end{vmatrix}$
$A(adjA) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$
$= \begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \end{bmatrix}$
= 0+0+0 $9+0+2$ $6+0-6$
$\begin{bmatrix} 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$
$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$
0 0 11
Also,
$\begin{bmatrix} 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$
$(adiA) \cdot A = -11 1 8 3 0 -2$
$(adjA) \cdot A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$
$ \begin{bmatrix} 0+9+2 & 0+0+0 & 0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix} $
= -11+3+8 $11+0+0$ $-22-2+24$
$\begin{bmatrix} 0-3+3 & 0+0+0 & 0+2+9 \end{bmatrix}$
11 0 0
$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$
Hence, $A(adjA) = (adjA)A = A I$.

Question 6:

Find the inverse of each of the matrices (if it exists).

 $\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$

Let
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

we have,

$$|A| = -2 + 15 = 13$$

Now,

$$A_{11} = 2, A_{12} = 3, A_{21} = -5, A_{22} = -1$$

$$\therefore adjA = \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|}adjA = \frac{1}{13}\begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

Question 7:

Find the inverse of each of the matrices (if it exists).

[1	2	3
1 0 0	2	3 4 5
0	0	5

Answer

$$\operatorname{Let} A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

We have,

$$|A| = 1(10-0) - 2(0-0) + 3(0-0) = 10$$

Now

 $A_{11} = 10 - 0 = 10, A_{12} = -(0 - 0) = 0, A_{13} = 0 - 0 = 0$ $A_{21} = -(10 - 0) = -10, A_{22} = 5 - 0 = 5, A_{23} = -(0 - 0) = 0$ $A_{31} = 8 - 6 = 2, A_{32} = -(4 - 0) = -4, A_{33} = 2 - 0 = 2$

$$\therefore adjA = \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|}adjA = \frac{1}{10} \begin{bmatrix} 10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2 \end{bmatrix}$$

Question 8:

Find the inverse of each of the matrices (if it exists).

 $\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$

Answer

	1	0	0
Let $A =$	3	3	0
	5	2	0 0 -1

We have,

$$|A| = 1(-3-0) - 0 + 0 = -3$$

Now,

$$A_{11} = -3 - 0 = -3, A_{12} = -(-3 - 0) = 3, A_{13} = 6 - 15 = -9$$

$$A_{21} = -(0 - 0) = 0, A_{22} = -1 - 0 = -1, A_{23} = -(2 - 0) = -2$$

$$A_{31} = 0 - 0 = 0, A_{32} = -(0 - 0) = 0, A_{33} = 3 - 0 = 3$$

$$\therefore adjA = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|}adjA = -\frac{1}{3}\begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

Question 9:

Find the inverse of each of the matrices (if it exists).

2	1	3
4	-1	0
7	2	1

Answer

Let
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$
.

We have,

$$|A| = 2(-1-0) - 1(4-0) + 3(8-7)$$

= 2(-1)-1(4)+3(1)
= -2-4+3
= -3

Now,

$$A_{11} = -1 - 0 = -1, A_{12} = -(4 - 0) = -4, A_{13} = 8 - 7 = 1$$

$$A_{21} = -(1 - 6) = 5, A_{22} = 2 + 21 = 23, A_{23} = -(4 + 7) = -11$$

$$A_{31} = 0 + 3 = 3, A_{32} = -(0 - 12) = 12, A_{33} = -2 - 4 = -6$$

$$\therefore adjA = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$
$$\therefore A^{-1} = \frac{1}{|A|}adjA = -\frac{1}{3}\begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

Question 10:

Find the inverse of each of the matrices (if it exists).

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$$
.
By expanding along C₁, we have:
 $|A| = 1(8-6) - 0 + 3(3-4) = 2 - 3 = -1$
Now,
 $A_{11} = 8 - 6 = 2, A_{12} = -(0+9) = -9, A_{13} = 0 - 6 = -6$
 $A_{21} = -(-4+4) = 0, A_{22} = 4 - 6 = -2, A_{23} = -(-2+3) = -1$
 $A_{31} = 3 - 4 = -1, A_{32} = -(-3-0) = 3, A_{33} = 2 - 0 = 2$
 $\therefore adjA = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix}$
 $\therefore A^{-1} = \frac{1}{|A|}adjA = -\begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$

Question 11:

Find the inverse of each of the matrices (if it exists).

 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$
.
We have,
 $|A| = 1(-\cos^2 \alpha - \sin^2 \alpha) = -(\cos^2 \alpha + \sin^2 \alpha) = -1$
Now,
 $A_{11} = -\cos^2 \alpha - \sin^2 \alpha = -1, A_{12} = 0, A_{13} = 0$
 $A_{21} = 0, A_{22} = -\cos \alpha, A_{23} = -\sin \alpha$
 $A_{31} = 0, A_{22} = -\sin \alpha, A_{33} = \cos \alpha$
 $\therefore adjA = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix}$
 $\therefore A^{-1} = \frac{1}{|A|} \cdot adjA = -\begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$
Question 12:
Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1}A^{-1}$
Answer
Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1}A^{-1}$
Answer
Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$.
We have,
 $|A| = 15 - 14 = 1$
Now,
 $A_{14} = 5, A_{12} = -2, A_{21} = -7, A_{22} = 3$
 $\therefore adjA = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$

Now, let
$$B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
.
We have,
 $|B| = 54 - 56 = -2$
 $\therefore adjB = \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$
 $\therefore B^{-1} = \frac{1}{|B|}adjB = -\frac{1}{2}\begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix}$
Now,
 $B^{-1}A^{-1} = \begin{bmatrix} -\frac{9}{2} & 4 \\ \frac{7}{2} & -3 \end{bmatrix} \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$
 $= \begin{bmatrix} -\frac{45}{2} - 8 & \frac{63}{2} + 12 \\ \frac{35}{2} + 6 & -\frac{49}{2} - 9 \end{bmatrix} = \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix}$...(1)

Then,

$$AB = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$= \begin{bmatrix} 18+49 & 24+63 \\ 12+35 & 16+45 \end{bmatrix}$$
$$= \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Therefore, we have $|AB| = 67 \times 61 - 87 \times 47 = 4087 - 4089 = -2$. Also,

$$adj(AB) = \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

$$\therefore (AB)^{-1} = \frac{1}{|AB|} adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{61}{2} & \frac{87}{2} \\ \frac{47}{2} & -\frac{67}{2} \end{bmatrix} \dots (2)$$

From (1) and (2), we have: $(AB)^{-1} = B^{-1}A^{-1}$

Hence, the given result is proved.

Question 13:

If
$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that $A^2 - 5A + 7I = O$. Hence find A^{-1}
Answer

$$A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 9-1 & 3+2 \\ -3-2 & -1+4 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

$$\therefore A^{2} - 5A + 7I$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - \begin{bmatrix} 15 & 5 \\ -5 & 10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$= \begin{bmatrix} -7 & 0 \\ 0 & -7 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
Hence, $A^{2} - 5A + 7I = O$.

$$\therefore A \cdot A - 5A = -7I$$

$$\Rightarrow A \cdot A(A^{-1}) - 5AA^{-1} = -7IA^{-1}$$
[Post-multiplying by A^{-1} as $|A| \neq 0$]

$$\Rightarrow A(AA^{-1}) - 5I = -7A^{-1}$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(A - 5I)$$

$$\Rightarrow A^{-1} = -\frac{1}{7}(5I - A)$$

$$= \frac{1}{7} \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
(Question 14:)
For the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers *a* and *b* such that $A^{2} + aA + bI = O$.
Answer

-a

$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$	
$\therefore A^2 = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 9+2 \\ 3+1 \end{bmatrix}$	
Now,	
$A^2 + aA + bI = O$	
$\Rightarrow (AA)A^{-1} + aAA^{-1} + bIA^{-1} = O$	Post-multiplying by A^{-1} as $ A \neq 0$
$\Rightarrow A(AA^{-1}) + aI + b(IA^{-1}) = O$	
$\Rightarrow AI + aI + bA^{-1} = O$	
$\Rightarrow A + aI = -bA^{-1}$	
$\Rightarrow A^{-1} = -\frac{1}{b}(A+aI)$	
Now,	
$A^{-1} = \frac{1}{ A } adjA = \frac{1}{1} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} -2\\3 \end{bmatrix}$
We have:	
$\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = -\frac{1}{b} \left(\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} a \\ 0 \end{bmatrix}$	$ \begin{bmatrix} 0 \\ a \end{bmatrix} = -\frac{1}{b} \begin{bmatrix} 3+a & 2 \\ 1 & 1+a \end{bmatrix} = \begin{bmatrix} \frac{-3-a}{b} & -\frac{2}{b} \\ -\frac{1}{b} & \frac{-1-a}{b} \end{bmatrix} $
Comparing the corresponding element	s of the two matrices, we have:

Comparing the corresponding elements of the two matrices, we have:

$$\frac{-\frac{1}{b} = -1 \Rightarrow b = 1}{\frac{-3-a}{b} = 1 \Rightarrow -3-a = 1 \Rightarrow a = -4}$$

Hence, -4 and 1 are the required values of *a* and *b* respectively.

Question 15:

For the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
 show that $A^3 - 6A^2 + 5A + 11I = 0$. Hence, find
Answer
 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}^2$
 $A^2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$
 $= \begin{bmatrix} 1+1+2 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$
 $A^3 = A^2 \cdot A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 4+2+2 & 4+4-1 & 4-6+3 \\ -3+8-28 & -3+16+14 & -3-24-42 \\ 7-3+28 & 7-6-14 & 7+9+42 \end{bmatrix}$
 $= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$

$$\begin{aligned} \therefore A^{3} - 6A^{2} + 5A + 11I \\ = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - 6\begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} + 5\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} + 11\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ = \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15 \end{bmatrix} + \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \\ = \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} \\ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O \\ Thus, A^{3} - 6A^{2} + 5A + 11I = O. \\ Now, \\ A^{3} - 6A^{2} + 5A + 11I = O \\ \Rightarrow (AAA) A^{-1} - 6(AA) A^{-1} + 5AA^{-1} + 11IA^{-1} = 0 \\ \Rightarrow (AAA) A^{-1} - 6(AA) A^{-1} + 5(AA^{-1}) = -11(M^{-1}) \\ \Rightarrow A^{2} - 6A + 5I = -11A^{-1} \\ \Rightarrow A^{-1} = -\frac{1}{11}(A^{2} - 6A + 5I) \qquad \dots (1) \end{aligned}$$

Now,							
$A^2 - 6A - 6A$	+51						
[4	2	1] [1	1	1] [1	0	0	
= -3	8	-14 -6 1	2	-3 + 5 0	1	0	
7	-3	14 2	-1	$\begin{bmatrix} 1 \\ -3 \\ 3 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	1	
_ _ 4	2	1] [6	6	6] [5	0	0]	
= -3	8	-14 - 6	12	-18 + 0	5	0	
7	-3	14 12	-6	$\begin{pmatrix} 6 \\ -18 \\ 18 \end{bmatrix} + \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$	0	5	
[9	2	1] [6	6	6			
= -3	13	-14 - 6	12	-18			
7	-3	$\begin{bmatrix} 1 \\ -14 \\ 19 \end{bmatrix} - \begin{bmatrix} 6 \\ 6 \\ 12 \end{bmatrix}$	-6	18			
$= \begin{bmatrix} 3\\ -9\\ -5 \end{bmatrix}$	-4	-5					
= -9	1	4					
5	3	1					
From equ	uation ((1), we have:					
	3	-4 -5	1 -3	4 5			
$A^{-1} = -\frac{1}{1}$	$\frac{1}{1} - 9$	1 4 :	$=\frac{1}{11}9$	4 5 -1 -4 -3 -1			
1	15	3 1	11 5	-3 -1			
Questio	n 16:						
Es	2 -						
If $A = -$		2 -1 verif	v that A	³ - 6A ² + 9A -	4I = 0	2 and hen	ce find A^{-1}
1		1 2	,,	³ - 6 <i>A</i> ² + 9 <i>A</i> -			
Answer							
Answer							

$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
$\begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 4+1+1 & -2-2-1 & 2+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$
$\begin{bmatrix} 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}$ $= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}$
$\begin{bmatrix} 5 & -5 & 6 \end{bmatrix}$ $A^{3} = A^{2}A = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
$\begin{bmatrix} 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 12+5+5 & -6-10-5 & 6+5+10 \\ -10-6-5 & 5+12+5 & -5-6-10 \\ 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$
$\begin{bmatrix} 10+5+6 & -5-10-6 & 5+5+12 \end{bmatrix}$ $= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$

Now,							
$A^3 - 6A^2$	$^{2} + 9A - ^{2}$	41					
□ 22	-21	21] [6	-5	5] [2	-1	1] [1	0 0
= -21	22	$\begin{bmatrix} 21\\ -21\\ 22 \end{bmatrix} - 6 \begin{bmatrix} 6\\ -5\\ 5 \end{bmatrix}$	6	-5 +9 -1	2	-1 - 4 0	1 0
21	-21	22 5	-5	6] [1	-1	2 0	0 1
22	-21	21] [36	-30	30] [18	-9	9] [4	0 0
= -21	22	-2130	36	-30 + -9	18	-9 - 0	4 0
21	-21	$ \begin{bmatrix} 21 \\ -21 \\ 22 \end{bmatrix} - \begin{bmatrix} 36 \\ -30 \\ 30 \end{bmatrix} $	-30	36 9	-9	18 0	0 4
40	-30	30] [40	-30	30] [0	0	0]	
= -30	40	$\begin{bmatrix} -30 \\ 40 \end{bmatrix} = \begin{bmatrix} -30 \\ 30 \end{bmatrix}$	40	-30 = 0	0	0	
30	-30	40 30	-30	40 0	0	0	
$\therefore A^3 - 6$	$A^{2} + 9A$	-4I = O					
Now,							
$A^{3} - 6A^{2}$	² +9A-	4I = O					
\Rightarrow (AAA	$A^{-1} - 6$	$5(AA)A^{-1} + 9AA$	$4^{-1} - 4L4$	$4^{-1} = O$	P	ost-multiplying	by A^{-1} as $ A \neq 0$
$\Rightarrow AA(A$	$4A^{-1}) - 6$	$5A(AA^{-1})+9(A$	$(A^{-1}) = 4$	$\left(LA^{-1}\right)$			
$\Rightarrow AAI$ -	-6 <i>AI</i> +9	$9I = 4A^{-1}$					
$\Rightarrow A^2 - 6$	5A + 9I	$=4A^{-1}$					
$\Rightarrow A^{-1} =$	$\frac{1}{4}(A^2 -$	•6 <i>A</i> +9 <i>I</i>)		(1)			
	4						
$A^2 - 6A$				4 7 5 6		~7	
6	-5	$\begin{bmatrix} 5 \\ -5 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$	-1		0	0	
= -3	6	-5 -6 -1	2	-1 + 9 0	0	0	
6	5	5 12	-6	6 9	0 (0	
= -5	-5	$\begin{bmatrix} 5 \\ -5 \\ 6 \end{bmatrix} - \begin{bmatrix} 12 \\ -6 \\ 6 \end{bmatrix}$	6	$\begin{bmatrix} -6 \\ 12 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	9 0	9	
Γ 2	1	-1]				-	
= 1	3	1 3					
1	1	3					

From equation (1), we have:

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Question 17:

Let *A* be a nonsingular square matrix of order 3×3 . Then |adjA| is equal to

A.
$$|A|$$
 B. $|A|^2$ **C.** $|A|^3$ **D.** $3|A|^3$

Answer ${\boldsymbol{\mathsf{B}}}$

We know that,

$$(adjA)A = |A|I = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$
$$\Rightarrow |(adjA)A| = \begin{vmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{vmatrix}$$
$$\Rightarrow |adjA||A| = |A|^3 \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = |A|^3 (0)$$

 $\therefore \left| adjA \right| = \left| A \right|^2$

Hence, the correct answer is B.

Question 18:

If A is an invertible matrix of order 2, then det (A^{-1}) is equal to

A. det (A) **B.**
$$\frac{1}{\det(A)}$$
 C. 1 **D.** 0
Answer

Since *A* is an invertible matrix, A^{-1} exists and $A^{-1} = \frac{1}{|A|} adjA$.

As matrix A is of order 2, let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then, $|A| = ad - bc$ and $adjA = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Now,

$$A^{-1} = \frac{1}{|A|} a dj A = \begin{bmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$$

$$\therefore |A^{-1}| = \begin{vmatrix} \frac{d}{|A|} & \frac{-b}{|A|} \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix} = \frac{1}{|A|^2} (ad - bc) = \frac{1}{|A|^2} . |A| = \frac{1}{|A|}$$

$$\therefore \det (A^{-1}) = \frac{1}{\det (A)}$$

Hence, the correct answer is B.