Exercise 12.1

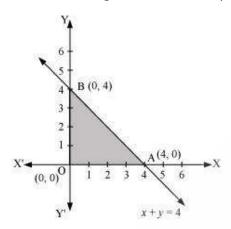
Question 1:

Maximise Z = 3x + 4y

Subject to the constraints: $x + y \le 4, x \ge 0, y \ge 0$.

Answer

The feasible region determined by the constraints, $x + y \le 4$, $x \ge 0$, $y \ge 0$, is as follows.

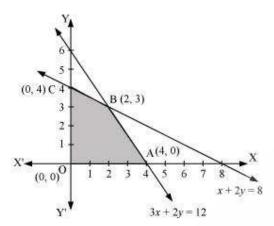


The corner points of the feasible region are O (0, 0), A (4, 0), and B (0, 4). The values of Z at these points are as follows.

Corner point	Z = 3x + 4y		
O(0, 0)	0		
A(4, 0)	12		
B(0, 4)	16	→ Maximum	

Therefore, the maximum value of Z is 16 at the point B (0, 4).

Question 2: Minimise Z = -3x + 4ysubject to $x+2y \le 8$, $3x+2y \le 12$, $x \ge 0$, $y \ge 0$ Answer The feasible region determined by the system of constraints, $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are O (0, 0), A (4, 0), B (2, 3), and C (0, 4). The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z} = -3x + 4y$	
0(0, 0)	0	0
A(4, 0)	-12	→ Minimum
B(2, 3)	6	
C(0, 4)	16	

Therefore, the minimum value of Z is -12 at the point (4, 0).

Question 3:

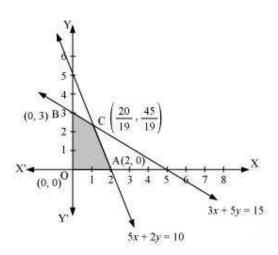
Maximise Z = 5x + 3y

subject to
$$3x + 5y \le 15$$
, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$

Answer

The feasible region determined by the system of constraints, $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, and $y \ge 0$, are as follows.

С



 $\left(\frac{20}{19}, \frac{45}{19}\right)$ The corner points of the feasible region are O (0, 0), A (2, 0), B (0, 3), and The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z} = 5x + 3y$		37
0(0, 0)	0	6	
A(2, 0)	10		
B(0, 3)	9		
$C\left(\frac{20}{19},\frac{45}{19}\right)$	$\frac{235}{19}$	→ Maximum	
(19 19)		225	(20.45
Therefore, the	maximum value	e of Z is $\frac{235}{19}$ at	the point $\left(\frac{20}{19}, \frac{45}{19}\right)$

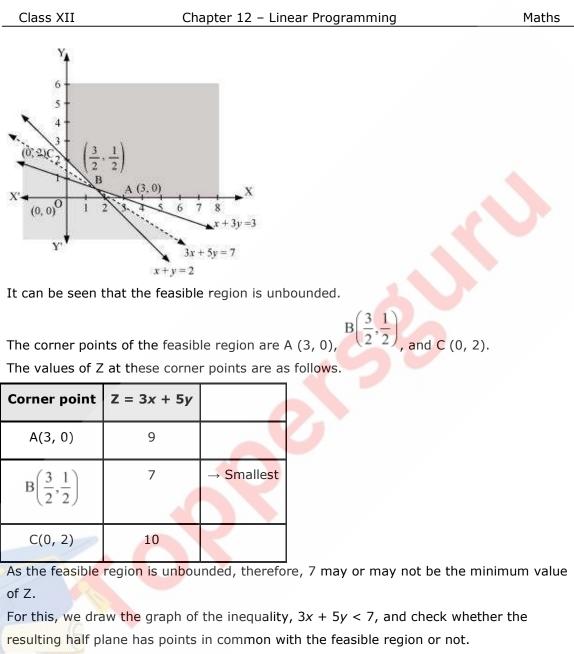
Question 4:

Minimise Z = 3x + 5y

such that $x + 3y \ge 3$, $x + y \ge 2$, $x, y \ge 0$

Answer

The feasible region determined by the system of constraints, $x+3y \ge 3, x+y \ge 2$, and x, $y \ge 0$, is as follows.



It can be seen that the feasible region has no common point with 3x + 5y < 7 Therefore,

the minimum value of Z is 7 at
$$\left(\frac{3}{2}, \frac{1}{2}\right)$$

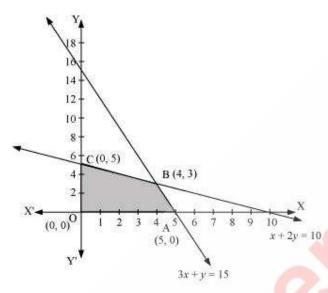
Question 5:

Maximise Z = 3x + 2y

subject to $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$.

Answer

The feasible region determined by the constraints, $x + 2y \le 10$, $3x + y \le 15$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A (5, 0), B (4, 3), and C (0, 5). The values of Z at these corner points are as follows.

Corner point	Z = 3x + 2y	
A(5, 0)	15	
B(4, 3)	18	→ Maximum
C(0, 5)	10	

Therefore, the maximum value of Z is 18 at the point (4, 3).

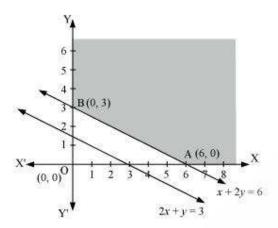
```
Question 6:

Minimise Z = x + 2y

subject to 2x + y \ge 3, x + 2y \ge 6, x, y \ge 0

Answer
```

The feasible region determined by the constraints, $2x + y \ge 3$, $x + 2y \ge 6$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A (6, 0) and B (0, 3). The values of Z at these corner points are as follows.

Corner point	$\mathbf{Z} = \mathbf{x} + 2\mathbf{y}$
A(6, 0)	6
B(0, 3)	6

It can be seen that the value of Z at points A and B is same. If we take any other point such as (2, 2) on line x + 2y = 6, then Z = 6

Thus, the minimum value of Z occurs for more than 2 points.

Therefore, the value of Z is minimum at every point on the line, x + 2y = 6

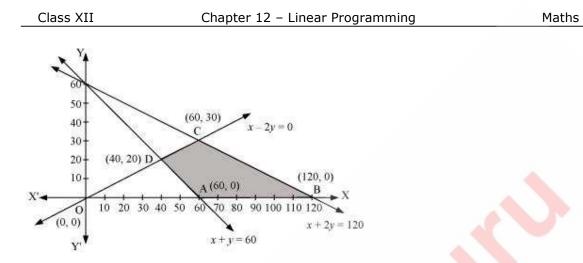
Question 7:

Minimise and Maximise Z = 5x + 10y

subject to $x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x, y \ge 0$

Answer

The feasible region determined by the constraints, $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A (60, 0), B (120, 0), C (60, 30), and D (40, 20).

Corner point	Z = 5x + 10y	
A(60, 0)	300	\rightarrow Minimum
B(120, 0)	600	\rightarrow Maximum
C(60, 30)	600	→ Maximum
D(40, 20)	400	

The values of Z at these corner points are as follows.

The minimum value of Z is 300 at (60, 0) and the maximum value of Z is 600 at all the points on the line segment joining (120, 0) and (60, 30).

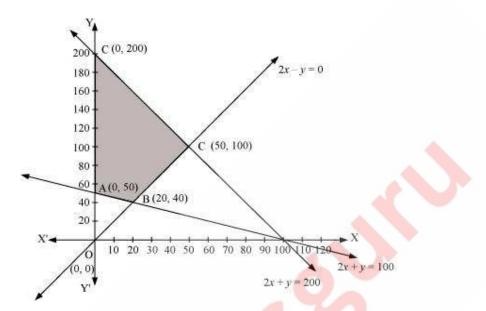
Question 8:

Minimise and Maximise Z = x + 2y

subject to $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$; $x, y \ge 0$

Answer

The feasible region determined by the constraints, $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$, $x \ge 0$, and $y \ge 0$, is as follows.



The corner points of the feasible region are A(0, 50), B(20, 40), C(50, 100), and D(0, 200).

The values of Z at these corner points are as follows.

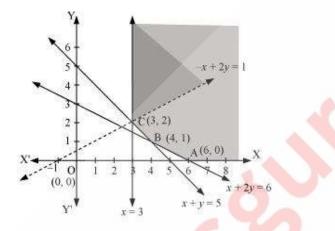
Corner point	Z = x + 2y		
A(0, 50)	100	→ Minimum	
B(20, 40)	100	→ Minimum	
C(50, 100)	250		
D(0, 200)	400	→ Maximum	

The maximum value of Z is 400 at (0, 200) and the minimum value of Z is 100 at all the points on the line segment joining the points (0, 50) and (20, 40).

Question 9:

Maximise Z = -x + 2y, subject to the constraints: $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, $y \ge 0$ Answer

The feasible region determined by the constraints, $x \ge 3$, $x + y \ge 5$, $x + 2y \ge 6$, and $y \ge 0$, is as follows.



It can be seen that the feasible region is unbounded.

The values of Z at corner points A (6, 0), B (4, 1), and C (3, 2) are as follows.

Corner point	Z = -x + 2y
A(6, 0)	Z = - 6
B(4, 1)	Z = - 2
C(3, 2)	Z = 1

As the feasible region is unbounded, therefore, Z = 1 may or may not be the maximum value.

For this, we graph the inequality, -x + 2y > 1, and check whether the resulting half plane has points in common with the feasible region or not.

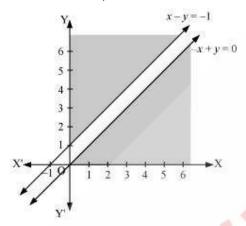
The resulting feasible region has points in common with the feasible region.

Therefore, Z = 1 is not the maximum value. Z has no maximum value.

```
Question 10:
```

```
Maximise Z = x + y, subject to x - y \le -1, -x + y \le 0, x, y \ge 0.
Answer
```

The region determined by the constraints, $x - y \le -1, -x + y \le 0, x, y \ge 0$, is as follows.



There is no feasible region and thus, Z has no maximum value.