Chapter 1: Relations and Functions

Ex 1.1

Q1. Determine whether each of the following relations are reflexive, symmetric and transitive:

(i)Relation R in the set $A = \{1, 2, 3...13, 14\}$ defined as

 $\mathbf{R} = \{(x, y): 3x - y = 0\}$

- (ii) Relation R in the set N of natural numbers defined as
- $\mathbf{R} = \{(x, y): y = x + 5 \text{ and } x < 4\}$
- (iii) Relation R in the set A = {1, 2, 3, 4, 5, 6} as
- $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{y} \text{ is divisible by } \mathbf{x}\}$
- (iv) Relation R in the set Z of all integers defined as
- $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x} \mathbf{y} \text{ is as integer}\}$
- (v) Relation R in the set A of human beings in a town at a particular time given by
- (a) $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x} \text{ and } \mathbf{y} \text{ work at the same place}\}$
- (b) $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x} \text{ and } \mathbf{y} \text{ live in the same locality} \}$
- (c) $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x} \text{ is exactly 7 cm taller than } \mathbf{y}\}$
- (d) $R = \{(x, y): x \text{ is wife of } y\}$
- (e) $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}): \mathbf{x} \text{ is father of } \mathbf{y}\}$

A.1. (i) We have, $R = \{(x, y): 3x - y = 0\}$ a relation in set $A = \{1, 2, 3, ..., 14\}$ For $x \in A, y = 3x$ or $y \neq x$ i.e.,

- (x, x) does not exist in R
- \therefore R is not reflexive.

For $(x, y) \in \mathbb{R}, y = 3x$

Then $(y, x)x \neq 3y$

So $(y, x) \notin R$

 $\therefore R \text{ is not symmetric}$ For $(x, y) \in R$ and $(y, z) \in R$. We have y = 3x and z = 3yThen z = 3(3x) = 9xi.e., $(x, z) \notin R$ $\therefore R \text{ is not Transitive}$

(ii) We have,

 $R = \{(x, y): y = x + 5 \& x < 4\} \text{ is a relation in N}$ $= \{(1, 1+5), (2, 2+5), (3, 3+5)\}$ $= \{(1, 6), (2, 7), (3, 8)\}$

Clearly, R is not reflexive as $(x, x) \notin R$ and $x < 4 \& x \in N$

Also, R is not symmetric as $(1,6) \in \mathbb{R}$ but $(6,1) \notin \mathbb{R}$

And for $(x, y) \in R(y, z) \notin R$. Hence, R is not Transitive.

(iii) $R = \{(x, y); y \text{ is divisible by } x \}$ is a relation in set

 $A = \{1, 2, 3, 4, 5, 6\}$

So, $R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}$

Hence, R is reflexive because $(1,1), (2,2), (3,3), (4,4), (5,5), (6,6) \in \mathbb{R}$ i.e., $(x,x) \in \mathbb{R}$

R is not symmetric as $(1,2) \in \mathbb{R}$ but $(2,1) \notin \mathbb{R}$

And for $x, y, z \in A$ and $(x, y) \in R & (y, z) \in R$

$$\frac{y}{z} = n \text{ and } \frac{z}{y} = m \text{ where } n \& m \in N$$

Then, z = my = m(nx) = mn.x

$$\Rightarrow \frac{z}{x} = m.n, m, mn \in N$$

Hence, $(x, z) \in \mathbb{R}$

 \therefore R is transitive

(iv) $R = \{(x, y) : x - y \text{ is an integer } \}$ is a relation in set Z

For $x \in Z$

x - x = 0 is an integer

So, $(x, x) \in R$ i.e., R is reflexive

For $x, y \in Z$ and $(x, y) \in R$

x - y is an integer

-(y-x) is an integer

(y-x) is an integer

So, $(y, x) \in R$ i.e., R is symmetric

For $x, y, z \in \mathbb{R}$ and $(x, y) \in \mathbb{R}$ & $(y, z) \in \mathbb{R}$ We have,

x - y is an integer

y-z is an integer

So, (x-y)+(y-z) is also an integer

x - z is an integer

So, $(x, z) \in \mathbb{R}$ i.e., \mathbb{R} is transitive.

(v) (a) $R = \{(x, y) : x \text{ and } y \text{ work at same place } \}$ in set A of human being.

For $x \in A$ we get

x & x work at same place

 $(x, x) \in R$ So, R is reflexive.

For $x, y \in A$ and $(x, y) \in R$ We get,

x & y work at same place

y & x work at same place

 $(y, x) \in R$. So, R is symmetric.

For $x, y, z \in A$ and (x, y) and $(y, z) \in R$. We have,

x & y work at same place

y & z work at same place

x & z work at same place

i.e., $(x, z) \in R$. So, R is Transitive.

(b) $R = \{(x, y) : x \& y \text{ live in same locality } \}$

For $x \in A$, we get,

x & x live in same locality

 $(x, x) \in R$ So, R is reflexive.

For $x, y \in A$ and $(x, y) \in R$ we get,

x & y live in same locality

y & x live in same locality

i.e., $(y, x) \in \mathbb{R}$. So, R is symmetric.

For $x, y, z \in A$ and $(x, y) & (y, z) \in R$. Then

x, y live in same locality

y, z live in same locality

x, z live in same locality

So, $(x, z) \in R$ i.e., R is transitive.

(c) $R = \{(x, y) : x \text{ is exactly 7 cm taller than y } \}$

For $x \in A$,

Height $(x) \neq 7$ + height of (x)

So, $(x, x) \notin R$. i.e., R is not reflexive.

For, $x, y \in A$ and $(x, y) \in R$ we have,

Height(x) = 7 + height(y)

But height $(y) \neq 7 + height (x)$

So, $(y, x) \in R$ i.e., R is not symmetric.

For $x, y, z \in A$ and $(x, y) \in R$ and $(y, z) \in R$ we have,

Height(x) = 7 + height(y)

And height (y) = 7 + height(z)

So, height
$$(x) = 7 + 7 + height (z) = 14 + height (z)$$

i.e., $(x, z) \notin R$

So, R is not transitive.

```
(d) R = \{(x, y) : x \text{ is wife of } y \}
```

For $x \in A$,

X is not wife of x.

So, $(x, x) \notin R$ i.e., R is not reflexive.

For $x, y \in A$ and $(x, y) \in R$,

X is wife of y but y is not wife of x

So, $(y, x) \notin R$. i.e., R is not symmetric.

For $x, y, z \in A$ and (x, y) and $(y, z) \in R$

X is wife of y

Y is wife of z

But y can never be husband & wife simultaneously

So, R is not transitive.

(e) $R = \{(x, y) : x \text{ is father of } y \}$

For $x \in A$,

X is not a father of x

So, $(x, x) \notin R$ i.e., R is not reflexive.

For $x, y \in A$ and $(x, y) \in R$

X is father of y

Y is father of z

But x is not father of z

So, $(x, z) \notin R$ i.e., R is not transitive.

Q2. Show that the relation R in the set R of real numbers, defined as

R = {(a, b): $a \le b^2$ } is neither reflexive nor symmetric nor transitive.

A.2. We have,

 $R = \{(a,b): a \le b^2\}$ is a relation in R.

For $a \in R$ then is $b = a, a \le a^2$ is not true for all real number less than 1.

Hence, R is not reflexive.

Let $(a, b) \in R$ and a=1 and b=2

Then, $a \le b^2 = 1 \le 2^2 = 1 \le 4$ so, $(1, 2) \in \mathbb{R}$

But (b, a) = (2, 1)

i.e., $2 \le 1^2 = 2 \le 1$ is not true

so, $(2,1) \notin \mathbb{R}$

hence, R is not symmetric.

For, $(a,b) = (10,4) \& (b,c) = (4,2) \in \mathbb{R}$

We have, $a = 10 \le 4^2 = b^2 => 10 \le 16$ is true

So, $(10, 4) \in \mathbb{R}$

And $4 \le 2^2 \Longrightarrow 4 \le 4$ So, $(4, 2) \in \mathbb{R}$

But $10 \le 2^2 => 10 \le 4$ is not true.

So, $(10, 2) \notin \mathbb{R}$

Hence, R is not transitive.

Q3. Check whether the relation R defined in the set {1, 2, 3, 4, 5, 6} as

 $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric or transitive.

A.3. We have,

 $R = \{(a,b): b = a+1\}$ is a relation in set $\{1,2,3,4,5,6\}$

So, $R = \{(1,2), (2,3), (3,4), (4,5), (5,6), (6,7)\}$

As, $(1,1) \notin R$, R is not reflexive

As, $(1,2) \in \mathbb{R}$ but $(2,1) \notin \mathbb{R}$, R is not symmetric

And as (1,2) & $(2,3) \in \mathbb{R}$ but $(1,3) \notin \mathbb{R}$

Hence, R is not transitive.

Q4. Show that the relation R in R defined as $R = \{(a, b): a \le b\}$, is reflexive and transitive but not symmetric.

A.4. We have, $R = \{(a, b) : a \le b\}$ is a relation in R.

For, $a \in \mathbb{R}$,

 $a \le b$ but $b \le a$ is not possible i.e., $(b, a) \notin R$

Hence, R is not symmetric.

For $(a,b) \in \mathbb{R}$ & $(b,c) \in \mathbb{R}$ and $a, b, c \in \mathbb{R}$

 $a \le b$ and $b \le c$

So, $a \leq c$

i.e., $(a,c) \in \mathbb{R}$

. R is transitive.

Q5. Check whether the relation R in R defined as $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.

A.5. We have,

 $R = \{(a, b): a \le b^3\}$ is a relation in R.

For, $(a,b) \in \mathbb{R}$ and $a = \frac{1}{2}$ we can write

$$a \le a^3 => \frac{1}{2} \le \left(\frac{1}{2}\right)^3 => \frac{1}{2} \le \frac{1}{8}$$
 which is not true.

So, R is not reflexive.

For $(a,b) = (1,2) \in \mathbb{R}$ we have,

 $a \le b^3 => 1 \le 2^3 => 1 \le 8$ is true.

So,
$$(1,2) \in \mathbb{R}$$

But $2 \le 1^3 \Longrightarrow 2 \le 1$ is not true

So,
$$(2,1) \notin \mathbb{R}$$
 and $(b,a) \notin \mathbb{R}$

Hence, R is not symmetric.

For, (a,b) = (10,4) and $(b,c) = (4,2) \in \mathbb{R}$

$$10 \le 4^3 => 10 \le 64$$
 is true=> $(10, 4) \in \mathbb{R}$

 $4 \le 2^3 \Longrightarrow 4 \le 8$ is true $\Longrightarrow (4, 2) \in \mathbb{R}$

But $10 \le 2^3 => 10 \le 8$ is not true=> $(10, 2) \notin \mathbb{R}$

Hence, for $(a,b), (b,c) \in \mathbb{R}, (a,c) \notin \mathbb{R}$

So, R is not transitive.

Q6. Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

A.6. We have,

 $R = \{(1,2), (2,1)\}$ is a relation in set $\{1,2,3\}$

Then, as $(1,1) \notin \mathbb{R}$ and $(2,2) \notin \mathbb{R}$

So, R is not reflective

As $(1,2) \in \mathbb{R}$ and $(2,1) \in \mathbb{R}$

So, R is symmetric

And as $(1,2) \in \mathbb{R}, (2,1) \in \mathbb{R}$ but $(1,1) \notin \mathbb{R}$

Q7. Show that the relation R in the set A of all the books in a library of a college, given by $R = \{(x, y): x \text{ and } y \text{ have same number of pages}\}$ is an equivalence relation.

A.7. We have,

 $R = \{(x, y) : x \& y \text{ have same number of pages } \}$ is a relation in set of A of all books in

For $(x, y) \in \mathbb{R} \& x, y \in \mathbb{A}$

As x=y=same no. of pages

Then, $(x, x) \in \mathbb{R}$

Hence, R is reflexive.

For $(x, y) \in \mathbb{R}$ and $x, y \in \mathbb{A}$

Also, $(y, x) \in \mathbb{R}$, $\therefore x = y$

Hence, R is symmetric.

For $x, y, z \in A$ and $(x, y) \in R$ and $(y, z) \in R$

x=y and y=z

⇒ x=z

i.e., $(x, z) \in \mathbb{R}$

hence, R is also transitive

... R is an equivalence relation.

Q8. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{(a,b) : |a-b| is even\}$ is an equivalence relation. Show that all the elements of $\{1, 3, 5\}$ are related to each other and all the elements of $\{2, 4\}$ are related to each other. But no element of $\{1, 3, 5\}$ is related to any element of $\{2, 4\}$.

A.8. We have,

 $R = \{(a,b): |a-b| \text{ is even } \} \text{ is a relation in set } A = \{1,2,3,4,5\}$

For all $a \in A$, |a-a| = 0 is even.

So, $(a,a) \in \mathbb{R}$. Hence R is reflexive

For $a, b \in A$ and $(a, b) \in R$

|a-b| is even

 $\Rightarrow |-b+a| \text{ is even } |$ $\Rightarrow |-(b-a)| \text{ is even}$ $\Rightarrow |b-a| \text{ is even}$

i.e.,
$$(b,a) \in \mathbb{R}$$

Hence, R is symmetric.

For $a, b, c \in A$ and $(a, b) \in R$ and $(b, c) \in R$

We have |a-b| is even

and |b-c| is even

then, |a-b|+|b-c| is even as even + even=even

```
\Rightarrow |a-b+b-c| \text{ is even}\Rightarrow |a-c| \text{ is even}
```

$$\therefore$$
 (a,c) \in R

So, R is transitive.

: R is an equivalence relation

All elements of [1,3,5] are odd positive numbers and its subset are odd and their difference given an even number. Hence, they are related to each other.

Similarly, all elements of [2,4] are even positive numbers and its subset are even and their difference gives an even number. Hence, they are related to each other.

However, elements of [1,3,5] are related to elements of [2,4] since the difference of the two subsets is never even.

Q9. Show that each of the relation R in the set $A = \{x \in Z : 0 \le x \le 12\}$, given by:

(i) $R = \{ (a,b) : |a - b| \text{ is a multiple of } 4 \}$

(ii) $\mathbf{R} = \{ (a,b) : a = b \}$ is an equivalence relation. Find the set of all elements related to 1 in each case.

A.9. We have,

 $A = \{ x \in 2, 0 \le x \le 12 \}$

(i) The relation in set A is defined by $R = \{(a,b): |a-b| \text{ is a multiple of } 4\}$

> For all $a \in A$, |a-a|=0 is a multiple of 4

So, $(a,a) \in R$ i.e., R is reflexive For $a, b \in A & (a,b) \in R$ we have, |a-b| is multiple of 4 |-(b-a)| is multiple of 4 |b-a| is multiple of 4 So, $(b,a) \in R$ i.e., R is symmetric

for $a, b, c \in A$ & $(a, b) \in R$ & $(b, c) \in R$ $|\mathbf{a} - \mathbf{b}| \& |\mathbf{b} - \mathbf{c}|$ is a multiple of 4 So |a-b|+|b-c| is also a multiple of 4 $|\mathbf{a}-\mathbf{b}+\mathbf{b}-\mathbf{c}|$ is a multiple of 4 |a-c| is a multiple of 4 So, $(a,c) \in \mathbb{R}$ i.e., R is transitive Hence, R is an equivalence relation. Finding all set of elements related to 1 For $a \in A$ Then, $(a,1) \in \mathbb{R}$ i.e., |a-1| is a multiple of 4 So, a can be $0 \le a \le 12$ Only, |1-1| = 0|5-1| = 4 is a multiple of 4 |9-1| = 8Hence, sets of elements related to $A = \{1, 5, 9\}$

(ii) The relation in set A is defined as $R = \{(a,b): a = b\}$ For all $a \in A$,

$$a=a \text{ is true}$$
so, $(a,a) \in \mathbb{R}$
i.e., R is reflexive
for $a, b \in A \& (a,b) \in \mathbb{R}$ we have,
$$a=b$$

$$b=a \text{ i.e., } (b,a) \in \mathbb{R}$$
so, R is symmetric
for $a, b, c \in A, (a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$. We have,
$$a=b \text{ and } b=c$$

$$\Rightarrow a=c \text{ i.e., } (a,c) \in \mathbb{R}$$

$$\rightarrow$$
 a=c i.e., (a,c) \in I

 \therefore R is transitive

Hence, R is an equivalence relation

Find all sets of elements related to 1

For $a \in A$, we need $(a, 1) \in R$

i.e., a=1

so, set of elements related to 1 in A is $\{1\}$.

Q10. Given an example of a relation. Which is

(i) Symmetric but neither reflexive nor transitive.

(ii) Transitive but neither reflexive nor symmetric.

- (iii) Reflexive and symmetric but not transitive.
- (iv) Reflexive and transitive but not symmetric.
- (v) Symmetric and transitive but not reflexive.

A.10. Let
$$A = \{a, b, c\}$$

(i) $R = \{(a, b), (b, a)\}$ is a relation in set A
So, $(a, b) \in R$ and $(b, a) \in R \rightarrow$ Symmetric
 $(a, a) \notin R \rightarrow$ not reflexive
 $(a, b) \in R, (b, a) \in R$ but $(a, a) \notin R \rightarrow$ not transitive
(ii) $R = \{(a, b), (b, c), (a, c)\}$ is a relation in set A
So, $(a, a) \notin R \rightarrow$ not reflexive

$$(a,b) \in R \text{ but } (b,a) \notin R \rightarrow \text{ not symmetric}$$

$$(a,b) \in R \& (b,c) \in R \text{ and also } (a,c) \in R \rightarrow \text{ transitive}$$

$$(iii)R=\{(a,a),(b,b),(c,c),(a,b),(b,a),(a,c),(c,a)\}$$
So, $(a,a),(b,b),(c,c) \in R \rightarrow \text{ Reflexive}$

$$(a,b) \in R \rightarrow (b,a) \in R \rightarrow \text{ Symmetric}$$

$$(a,c) \in R \rightarrow (c,a) \in R$$

$$(b,a) \in R \text{ and } (a,c) \in R$$
But $(b,c) \notin R \rightarrow \text{ not transitive}$

$$(iv)R=\{(a,a),(b,b),(c,c),(a,b),(b,c),(a,c)\} \text{ is s relation in set } A$$
So, $(a,a),(b,b),(c,c) \in R \rightarrow \text{ reflexive}$

$$(a,b) \& (b,c) \in R \text{ so, } (a,c) \in R \rightarrow \text{ transitive}$$

$$(a,b) \in R \text{ but } (b,a) \notin R \rightarrow \text{ not symmetric}$$

$$(v) R=\{(a,a),(a,b),(b,a)\}$$
So, $(b,b) \notin R \rightarrow \text{ not reflexive}$

$$(a,b) \in R \text{ and } (b,a) \in R \rightarrow \text{ symmetric}$$
And $(a,b) \in R \& (b,a) \in R$
and also $(a,a) \in R \rightarrow \text{ transitive}$

Q11. Show that the relation R in the set A of points in a plane given by $R = \{(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point P <math>\neq$ (0, 0) is the circle passing through P with origin as centre.

A.11. The given relation in set A of points in a plane is

 $R = \{(P,Q): distance of point P from origin=distance of point Q from origin\}$

If O is the point of origin

$$\mathbf{R} = \left\{ \left(\mathbf{P}, \mathbf{Q}\right) : \mathbf{PO} = \mathbf{QO} \right\}$$

Then, for $P \in A$ we have PO=PO

So, $(P,P) \in \mathbb{R}$

i.e., P is reflexive

for, $P,Q \in A$ and $(P,Q) \in R$ we have

⇒ PO=QO

 \Rightarrow QO=PO i.e., (Q, P) \in R

i.e., R is symmetric

for $P,Q,S \in A$ and $(P,Q) & (Q,S) \in R$

PO=QO and QO=SO

⇒ PO=SO

i.e., $(P,S) \in R$

so, R is transitive

Hence, R is an equivalence relation

For a point $P \neq (0,0)$ the set of all points related to P i.e., distance from origin to the points are equal is a circle with center at origin (0,0) by the definition of circle

Q12. Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar to } T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

A.12. The given relation to set A of all triangles is defined as

$$R = \{ (T_1, T_2) : T_1 \text{ is similar to } T_2 \}$$

For $T_1 \in A$,

 T_1 is always similar to T_1

So, $(T_1, T_1) \in \mathbb{R}$. Hence R is reflexive.

For $T_1, T_2 \in A$ and $(T_1, T_2) \in R$ we have

 $T_1 \sim T_2$ (similar)

$$\Rightarrow T_2 \sim T_1 \text{ i.e., } (T_2, T_1) \in \mathbb{R}$$

so, R is symmetric.

for, $T_1, T_2, T_3 \in A$ and $(T_1, T_2) \in R$ and $(T_2, T_3) \in R$

 $T_1 \sim T_2$ and $T_2 \sim T_3$

i.e., $T_1 \sim T_3 \rightarrow (T_1, T_3) \in \mathbb{R}$

so, R is transitive

 \therefore R is an equivalence relation.

Given, sides of T_1 are 3,4,5

Sides of T_2 are 5,12,13

Sides of T_3 are 6,8,10

As $\frac{3}{5} \neq \frac{4}{12} \neq \frac{5}{13}$ we conclude that T_1 is not similar to T_2

As $\frac{5}{6} \neq \frac{12}{8} \neq \frac{13}{10}$ we conclude that T_2 is not similar to T_3

But as $\frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \frac{1}{2}$ we conclude that $T_1 \sim T_3$

Hence, T_1 is related to T_3

Q13. Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right-angle triangle T with sides 3, 4 and 5?

A.13. The given relation in set A of all polygons is defined as

 $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$

Let $P_1 \in A$,

As number of sides (P_1) = number of sides (P_1)

 $(\mathbf{P}_1,\mathbf{P}_1)\in\mathbf{R}$

So, R is reflexive.

Let $P_1, P_2 \in A$ and $(P_1, P_2) \in R$

Then, number of sides of P_1 = number of sides of P_2

 \Rightarrow Number of sides of $P_2 =$ number of sides of P_1

i.e., $(P_2, P_1) \in \mathbb{R}$

so, R is symmetric.

Let $P_1, P_2, P_3 \in A$ and (P_1, P_2) and $(P_2, P_3) \in R$

Then, number of sides (P_1) = number of sides (P_2)

Number of sides (P_2) = number of sides (P_3)

So, number of sides (P_1) = number of sides (P_3)

I.e., $(P_1, P_3) \in \mathbb{R}$

So, R is transitive.

Hence, R is an equivalence relation.

The set of all triangles will be the elements in A related to the right-angle triangle T with sides 3,4 and 5 as they all have three number of sides.

Q14. Let L be the set of all lines in XY plane and R be the relation in L defined as $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

A.14. The given relation in the set L = all lines in XY - plane is defined as

 $R = \{ (L_1, L_2) : L_1 \text{ is parallel to } L_2 \}$

Let $L_1 \in A$ then as L_1 is parallel to L_1 ,

 $(L_1, L_1) \in R$

So, R is reflexive

Let
$$L_1, L_2 \in A$$
 and $(L_1, L_1) \in \mathbb{R}$

Then, L_1 is parallel to L_2

 L_2 is parallel to L_1

So, $(L_2, L_1) \in R$

i.e., *R* is symmetric

Let $L_1, L_2, L_3 \in A$ and (L_1, L_2) and $(L_2, L_3) \in R$

Then, $L_1 \parallel L_2$ and $L_2 \parallel L_3$

So, $L_1 \parallel L_3$ i.e., $(L_1, L_2) \in R$ So, *R* is transitive

Hence, R is an equivalence relation

The set of lines related to y=2x+4 is given by the equation y=2x+C where C is some constant.

Q15. Let R be the relation in the set $\{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

A.15. The set in $A = \{1, 2, 3, 4\}$

The relation in this set A is given by

$$R = \{ (1,2), (2,2), (1,1), (4,4), (1,3), (3,3), (3,2) \}$$

R is reflexive as (1,1), (2,2), (3,3), (4,4) $\in \mathbb{R}$

As, $(1,2) \in R$ but $(2,1) \notin R$

R is not symmetric

For
$$(1,2) \in R$$
 and $(2,2) \in R$; $(1,2) \in R$

And for
$$(1,3) \in R$$
 and $(3,2) \in R$; $(1,3) \in R$

 \therefore R is transitive

Hence, option (B) is correct

Q16. Let R be the relation in the set N given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer.

(A) $(2, 4) \in \mathbb{R}$ (B) $(3, 8) \in \mathbb{R}$ (C) $(6, 8) \in \mathbb{R}$ (D) $(8, 7) \in \mathbb{R}$

A.16. The given relation in set N defined by

 $R = \{(a,b) : a = b-2, b > 6\}$ For (2,4), 4>6 is not true For (3,8), 8>6 but $3=8-2 \Rightarrow$ 3=6 is not true For (6,8), 8>6 6=8-2 ⇒ 6=6 is true and And for (8,7), 7>6 but 8= 7-2 ⇒ 8=5 is not true Hence, option (C) is correct