Miscellaneous

- 1. Find the area under the given curves and given lines:
 - (i) $y = x^2$, x = 1, x = 2 and x-axis
 - (ii) $y = x^4$, x = 1, x = 5 and x-axis
 - i. The required area is represented by the shaded area ADCBA as

Area ADCBA =
$$\int_{1}^{2} y dx$$

$$= \int_{0}^{2} x^{2} dx$$

$$= \left[\frac{x^3}{3}\right]_1^2$$

$$=\frac{8}{3}-\frac{1}{3}$$

$$=\frac{7}{3}$$
 units

$$= \int_{1}^{5} y dx$$

$$= \int_{1}^{5} x^{4} dx$$

$$= \left[\frac{x^5}{5}\right]_1^5 = \left(\frac{5^5 - 1^5}{5}\right)$$
$$= \frac{(3125 - 1)}{5}$$

$$=\frac{3124}{5} = 624.8unit^2$$

2. Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$.

Answer

The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
у	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.

It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$

$$\therefore \int_{-6}^{0} |(x+3)| dx = -\int_{-6}^{-3} (x+3) dx + \int_{-3}^{0} (x+3) dx$$

$$= -\left[\frac{x^{2}}{2} + 3x \right]_{-6}^{-3} + \left[\frac{x^{2}}{2} + 3x \right]_{-3}^{0}$$

$$= -\left[\left(\frac{(-3)^{2}}{2} + 3(-3) \right) - \left(\frac{(-6)^{2}}{2} + 3(-6) \right) \right] + \left[0 - \left(\frac{(-3)^{2}}{2} + 3(-3) \right) \right]$$

$$= -\left[-\frac{9}{2} \right] - \left[-\frac{9}{2} \right]$$

$$= 9$$

3. Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.

.. The required area bounded by the curve

$$= \int_{0}^{\pi} y dx + \int_{\pi}^{2\pi} y dx$$

$$= \int_{0}^{\pi} \sin x dx + \int_{\pi}^{2\pi} \sin x dx$$

$$= \left[\left[-\cos x \right]_{0}^{\pi} \right] + \left[\left[-\cos x \right]_{0}^{\pi} \right]$$

$$= \left[-\left[\cos x - \cos \theta \right] \right] + \left[-\left[\cos 2\pi - \cos \pi \right] \right]$$

$$= \left[-\left[-1 - 1 \right] \right] + \left[-\left[1 + 1 \right] \right]$$

$$= \left[2 \right] + \left[-2 \right] = 2 + 2 = 4unit^{2}$$

Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

$$(A) - 9$$

(B)
$$\frac{-15}{4}$$
 (C) $\frac{15}{4}$

(C)
$$\frac{15}{4}$$

(D)
$$\frac{17}{4}$$

Answer

For $y=x^3$

$$area(OAB) = \int_{0}^{1} y dx$$

$$= \int_{0}^{1} x^{3} dx$$

$$= \left[\frac{x^4}{4}\right]_0^1 = \frac{1}{4}$$

$$area(ODC) = \int_{-2}^{0} y dx$$

$$=\int_{-2}^{0} x^3 dx$$

$$= \left[\left[\frac{x^4}{4} \right]_{-2}^{0} \right] = \left[\left[\frac{0^4}{4} - \frac{(-2)^4}{4} \right] \right] = 4$$

 $\therefore \text{ Total area of the bounded region} = \frac{1}{4} + 4$

= 17/4 units

So, option D is correct

- 5. The area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 and x = 1 is given by
 - (A) 0
- (B) $\frac{1}{3}$
- (C) $\frac{2}{3}$
- (D) $\frac{4}{3}$

[Hint : $y = x^2$ if x > 0 and $y = -x^2$ if x < 0].

Answer

Required area =
$$\int_{-1}^{1} y dx$$

$$= \int_{-1}^{1} x |x| dx$$

$$= \int_{-1}^{0} x^{2} dx + \int_{0}^{1} x^{2} dx$$

$$= \left[\frac{x^{3}}{3}\right]_{-1}^{0} + \left[\frac{x^{3}}{3}\right]_{0}^{1}$$

$$= -\left(-\frac{1}{3}\right) + \frac{1}{3}$$

$$= \frac{2}{3} \text{ units}$$