Miscellaneous Solutions

Question 1:

Prove that the determinant
$$\begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$$
 is independent of θ .

$$\Delta = \begin{vmatrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{vmatrix}$$

$$= x(x^2 - 1) - \sin\theta(-x\sin\theta - \cos\theta) + \cos\theta(-\sin\theta + x\cos\theta)$$

$$= x^3 - x + x\sin^2\theta + \sin\theta\cos\theta - \sin\theta\cos\theta + x\cos^2\theta$$

$$= x^3 - x + x(\sin^2\theta + \cos^2\theta)$$

$$= x^3 - x + x$$

$$= x^3 \text{ (Independent of } \theta\text{)}$$

Hence, Δ is independent of θ .

Question 2:

Without expanding the determinant, prove that

L.H.S. =
$$\begin{vmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{vmatrix}$$

= $\frac{1}{abc} \begin{vmatrix} a^2 & a^3 & abc \\ b^2 & b^3 & abc \\ c^2 & c^3 & abc \end{vmatrix}$ [$R_1 \rightarrow aR_1, R_2 \rightarrow bR_2, \text{and } R_3 \rightarrow cR_3$]
= $\frac{1}{abc} \cdot abc \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$ [Taking out factor abc from C₃]
= $\begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix}$ [Applying C₁ \leftrightarrow C₃ and C₂ \leftrightarrow C₃]
= R.H.S.
Hence, the given result is proved.
Question 3:
Evaluate $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$
Answer
 $\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$
Expanding along C₃, we have:

$$\Delta = -\sin \alpha \left(-\sin \alpha \sin^2 \beta - \cos^2 \beta \sin \alpha \right) + \cos \alpha \left(\cos \alpha \cos^2 \beta + \cos \alpha \sin^2 \beta \right)$$

$$= \sin^2 \alpha \left(\sin^2 \beta + \cos^2 \beta \right) + \cos^2 \alpha \left(\cos^2 \beta + \sin^2 \beta \right)$$

$$= \sin^2 \alpha (1) + \cos^2 \alpha (1)$$

$$= 1$$
Question 4:
If a, b and c are real numbers, and determinant $\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$
Show that either $a + b + c = 0$ or $a = b = c$.
Answer
$$\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$
Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have:
$$\Delta = \begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ a+b & b+c & c+a \end{vmatrix}$$

$$= 2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$$
Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have:
$$\Delta = 2(a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ c+a & b-c & b-a \\ a+b & c-a & c-b \end{vmatrix}$$
Expanding along R_1 , we have:

$$\Delta = 2(a+b+c)(1)[(b-c)(c-b)-(b-a)(c-a)]$$

= $2(a+b+c)[-b^2-c^2+2bc-bc+ba+ac-a^2]$
= $2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$
It is given that $\Delta = 0$.
 $(a+b+c)[ab+bc+ca-a^2-b^2-c^2] = 0$
 \Rightarrow Either $a+b+c = 0$, or $ab+bc+ca-a^2-b^2-c^2 = 0$.
Now,
 $ab+bc+ca-a^2-b^2-c^2 = 0$
 $\Rightarrow -2ab-2bc-2ca+2a^2+2b^2+2c^2 = 0$
 $\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2 = 0$
 $\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2 = 0$
 $\Rightarrow (a-b)=(b-c)=(c-a)=0$
 $\Rightarrow a=b=c$

Hence, if $\Delta = 0$, then either a + b + c = 0 or a = b = c.

Question 5: Solve the equation $\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$

x+ax x $x \quad x+a \quad x = 0$ х $x \quad x+a$ Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we get: $\begin{vmatrix} 3x+a & 3x+a & 3x+a \end{vmatrix}$ $x \quad x+a \quad x = 0$ $x \quad x \quad x+a$ $\Rightarrow (3x+a) \begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have: $(3x+a) \begin{vmatrix} 1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a \end{vmatrix} = 0$ Expanding along R1, we have: $(3x+a)\left[1\times a^2\right]=0$ $\Rightarrow a^2(3x+a) = 0$ But $a \neq 0$. Therefore, we have: 3x + a = 0 $\Rightarrow x = -\frac{a}{3}$ **Question 6:** Prove that $\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix} = 4a^2b^2c^2$

 $=4a^{2}b^{2}c^{2}$

 a^2 $bc = ac + c^2$ b^2 ac $\Delta = a^2 + ab$ $b^2 + bc = c^2$ ab Taking out common factors a, b, and c from C_1, C_2 , and C_3 , we have: a+cа с b $\Delta = abc | a+b$ а b b+cс Applying $\mathbf{R}_2 \rightarrow \mathbf{R}_2 - \mathbf{R}_1$ and $\mathbf{R}_3 \rightarrow \mathbf{R}_3 - \mathbf{R}_1$, we have: c = a+cа $\Delta = abc \qquad b \qquad b - c \qquad -c$ b-a b -aApplying $\mathbf{R}_2 \rightarrow \mathbf{R}_2 + \mathbf{R}_1$, we have: a c a+c $\Delta = abc | a+b | b | a$ b-a b -aApplying $\mathbf{R}_3 \rightarrow \mathbf{R}_3 + \mathbf{R}_2$, we have: a+cа Ċ $\Delta = abc | a+b | b$ а 2b 0 2ba+ca С $=2ab^2c|a+b|b|$ a 0 1 1 Applying $C_2 \rightarrow C_2 - C_1$, we have: a c-a a+c $\Delta = 2ab^2c a + b - a$ a 0 0 Expanding along R_3 , we have: $\Delta = 2ab^{2}c\left[a\left(c-a\right)+a\left(a+c\right)\right]$ $=2ab^2c\left[ac-a^2+a^2+ac\right]$ $=2ab^2c(2ac)$

Hence, the given result is proved.

Question 8:

Let
$$A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$
 verify that
(i) $\begin{bmatrix} adjA \end{bmatrix}^{-1} = adj(A^{-1})$
(ii) $\begin{pmatrix} A^{-1} \end{pmatrix}^{-1} = A$
Answer
 $A = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$
 $\therefore |A| = 1(15-1) + 2(-10-1) + 1(-2-3) = 14 - 22 - 5 = -12$
Now, $A_{11} = 14, A_{12} = 11, A_{13} = -5$
 $A_{21} = 11, A_{22} = 4, A_{23} = -3$
 $A_{31} = -5, A_{32} = -3, A_{13} = -1$
 $\therefore adjA = \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix}$
 $\therefore A^{-1} = \frac{1}{|A|}(adjA)$
 $= -\frac{1}{13} \begin{bmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{bmatrix} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5 \\ -11 & -4 & 3 \\ 5 & 3 & 1 \end{bmatrix}$
(i)
 $|adjA| = 14(-4-9) - 11(-11-15) - 5(-33+20)$
 $= 14(-13) - 11(-26) - 5(-13)$
 $= -182 + 286 + 65 = 169$

We have,

$adj(adjA) = \begin{bmatrix} -13 & 26 & -13 \\ 26 & -39 & -13 \\ 12 & 12 & 65 \end{bmatrix}$	
$\therefore \left[adjA\right]^{-1} = \frac{1}{\left adjA\right } \left(adj\left(adjA\right)\right)$	
$=\frac{1}{169}\begin{bmatrix}-13 & 26 & -13\\26 & -39 & -13\\-13 & -13 & -65\end{bmatrix}$	
$=\frac{1}{13}\begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}$	
Now, $A^{-1} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{14}{13} & -\frac{11}{13} & \frac{5}{13}\\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13}\\ -\frac{11}{13} & -\frac{4}{13} & \frac{3}{13}\\ \frac{5}{13} & \frac{3}{13} & \frac{1}{13} \end{bmatrix}$	
$\begin{bmatrix} -\frac{4}{169} - \frac{9}{169} & -\left(-\frac{11}{169} - \frac{15}{169}\right) \\ (11 - 15) & 14 - 25 \end{bmatrix}$	$-\frac{33}{169} + \frac{20}{169}$
$\therefore adj(A^{-1}) = -\left(-\frac{11}{169} - \frac{13}{169}\right) - \frac{11}{169} - \frac{20}{169} - \left(-\frac{42}{169} + \frac{55}{169}\right)$	$\frac{-\left(-\frac{12}{169} + \frac{33}{169}\right)}{\frac{56}{169} - \frac{121}{169}}$
$=\frac{1}{169}\begin{bmatrix}-13 & 26 & -13\\26 & -39 & -13\\-13 & -13 & -65\end{bmatrix}=\frac{1}{13}\begin{bmatrix}-1 & 2\\2 & -3\\-1 & -1\end{bmatrix}$	$\begin{bmatrix} -1 \\ -1 \\ -5 \end{bmatrix}$
Hence, $\left[adjA\right]^{-1} = adj(A^{-1}).$	
(ii)	

We have shown that:

$$A^{-1} = \frac{1}{13} \begin{bmatrix} -14 & -11 & 5\\ -11 & -4 & 3\\ 5 & 3 & 1 \end{bmatrix}$$

And, $adjA^{-1} = \frac{1}{13} \begin{bmatrix} -1 & 2 & -1\\ 2 & -3 & -1\\ -1 & -1 & -5 \end{bmatrix}$

Now,

$$|A^{-1}| = \left(\frac{1}{13}\right)^3 \left[-14 \times (-13) + 11 \times (-26) + 5 \times (-13)\right] = \left(\frac{1}{13}\right)^3 \times (-169) = -\frac{1}{13}$$
$$\therefore \left(A^{-1}\right)^{-1} = \frac{adjA^{-1}}{|A^{-1}|} = \frac{1}{\left(-\frac{1}{13}\right)} \times \frac{1}{13} \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix} = A$$
$$\therefore \left(A^{-1}\right)^{-1} = A$$

Question 9:

Evaluate $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$

 $\Delta = \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$ Applying $R_1 \rightarrow R_1 + R_2 + R_3$, we have: $\Delta = \begin{vmatrix} 2(x+y) & 2(x+y) & 2(x+y) \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$ $= 2(x+y) \begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$ Applying $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$, we have: $\Delta = 2(x+y) \begin{vmatrix} 1 & 0 & 0 \\ y & x & x-y \\ x+y & -y & -x \end{vmatrix}$ Expanding along R_1 , we have: $\Delta = 2(x+y)\left[-x^2+y(x-y)\right]$ $=-2(x+y)(x^2+y^2-yx)$ $= -2\left(x^3 + y^3\right)$ **Question 10:** Evaluate 1 x + yx + yAnswer

$$\Delta = \begin{vmatrix} 1 & x & y \\ 1 & x + y & y \\ 1 & x & x + y \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:
$$\Delta = \begin{vmatrix} 1 & x & y \\ 0 & y & 0 \\ 0 & 0 & x \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = 1(xy - 0) = xy$$

Question 11:

Using properties of determinants, prove that:

$$\begin{array}{ccc} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{array} = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma)$$

Answer

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta - \alpha & \beta^2 - \alpha^2 & \alpha - \beta \\ \gamma - \alpha & \gamma^2 - \alpha^2 & \alpha - \gamma \end{vmatrix}$$
$$= (\beta - \alpha)(\gamma - \alpha) \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 1 & \gamma + \alpha & -1 \end{vmatrix}$$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha) \begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ 1 & \beta + \alpha & -1 \\ 0 & \gamma - \beta & 0 \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = (\beta - \alpha)(\gamma - \alpha) [-(\gamma - \beta)(-\alpha - \beta - \gamma)]$$

= $(\beta - \alpha)(\gamma - \alpha)(\gamma - \beta)(\alpha + \beta + \gamma)$
= $(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)(\alpha + \beta + \gamma)$

Hence, the given result is proved.

Question 12:

Using properties of determinants, prove that:

$$\begin{vmatrix} x & x^{2} & 1 + px^{3} \\ y & y^{2} & 1 + py^{3} \\ z & z^{2} & 1 + pz^{3} \end{vmatrix} = (1 + pxyz)(x - y)(y - z)(z - x)$$

Answer

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y & y^2 & 1 + py^3 \\ z & z^2 & 1 + pz^3 \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = \begin{vmatrix} x & x^2 & 1 + px^3 \\ y - x & y^2 - x^2 & p(y^3 - x^3) \\ z - x & z^2 - x^2 & p(z^3 - x^3) \end{vmatrix}$$

= $(y - x)(z - x)\begin{vmatrix} x & x^2 & 1 + px^3 \\ 1 & y + x & p(y^2 + x^2 + xy) \\ 1 & z + x & p(z^2 + x^2 + xz) \end{vmatrix}$

Applying $R_3 \rightarrow R_3 - R_2$, we have:

$$\Delta = (y-x)(z-x) \begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & z-y & p(z-y)(x+y+z) \end{vmatrix}$$
$$= (y-x)(z-x)(z-y) \begin{vmatrix} x & x^2 & 1+px^3 \\ 1 & y+x & p(y^2+x^2+xy) \\ 0 & 1 & p(x+y+z) \end{vmatrix}$$

Expanding along R_3 , we have:

$$\Delta = (x - y)(y - z)(z - x) [(-1)(p)(xy^{2} + x^{3} + x^{2}y) + 1 + px^{3} + p(x + y + z)(xy)]$$

= $(x - y)(y - z)(z - x) [-pxy^{2} - px^{3} - px^{2}y + 1 + px^{3} + px^{2}y + pxy^{2} + pxyz]$
= $(x - y)(y - z)(z - x)(1 + pxyz)$

Hence, the given result is proved.

Question 13:

Using properties of determinants, prove that:

$$\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$$

Answer

$$\Delta = \frac{3a - a + b - a + c}{-c + a} \frac{3b - b + c}{-c + b} \frac{3c}{3c}$$

Applying $C_1 \rightarrow C_1 + C_2 + C_3$, we have:

	a+b+c	-a+b	-a+c
$\Delta =$	a+b+c	3b	-b + c
	a+b+c	-c+b	3 <i>c</i>

$$= (a+b+c) \begin{vmatrix} 1 & -a+b & -a+c \\ 1 & 3b & -b+c \\ 1 & -c+b & 3c \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$, we have:

$$\Delta = (a+b+c) \begin{vmatrix} 1 & -a+b & -a+c \\ 0 & 2b+a & a-b \\ 0 & a-c & 2c+a \end{vmatrix}$$

Expanding along C_1 , we have:

$$\Delta = (a+b+c)[(2b+a)(2c+a) - (a-b)(a-c)]$$

= $(a+b+c)[4bc+2ab+2ac+a^2 - a^2 + ac+ba-bc]$
= $(a+b+c)(3ab+3bc+3ac)$
= $3(a+b+c)(ab+bc+ca)$

Hence, the given result is proved.

Question 14:

Using properties of determinants, prove that:

1	1 + p	1 + p + q	
2	3 + 2p	4 + 3p + 2q = 1	l
3	6 + 3p	10 + 6p + 3q	

1	1+p	1 + p + q
$\Delta = 2$	3 + 2p	4 + 3p + 2q
3	6 + 3p	10 + 6p + 3q

Applying $R_2 \rightarrow R_2 - 2R_1$ and $R_3 \rightarrow R_3 - 3R_1$, we have:

	1	1 + p	1 + p + q
$\Delta =$	0	1	2 + p
	0	3	7+3 <i>p</i>

Applying $R_3 \rightarrow R_3 - 3R_2$, we have:

	1	1 + p	1 + p + q
$\Delta =$	0	1	2+ <i>p</i>
	0	0	1

Expanding along C_1 , we have:

$$\Delta = 1 \begin{vmatrix} 1 & 2+p \\ 0 & 1 \end{vmatrix} = 1(1-0) = 1$$

Hence, the given result is proved.

Question 15:

Using properties of determinants, prove that:

 $\sin \alpha \quad \cos \alpha \quad \cos(\alpha + \delta)$ $\sin \beta \quad \cos \beta \quad \cos(\beta + \delta) = 0$ $\sin \gamma \quad \cos \gamma \quad \cos(\gamma + \delta)$

	$\sin \alpha$	co	sα	$\cos(\alpha +$	0)		
Δ =	sin β	cos	sβ	$\cos(\beta +$	$\delta)$		
	sinγ	co	sγ	$\cos(\gamma +$	$\delta)$		
	1		sin	$\alpha \sin \delta$	с	$\cos \alpha \cos \delta$	
=	in Sco	8	sin ,	$\beta \sin \delta$	с	$\cos\beta\cos\delta$	
	51110 003	50	sin	$\gamma \sin \delta$	с	$\cos\gamma\cos\delta$	
App	lying C	\rightarrow	C_1	$+C_3$, we	hav	e:	

 $\cos \delta \quad \cos \beta \cos \delta - \sin \beta \sin \delta$ $\cos \delta \quad \cos \gamma \cos \delta - \sin \gamma \sin \delta$

Applying $C_1 \rightarrow C_1 + C_3$, we have:

1	$\cos \alpha \cos \sigma$	$\cos \alpha \cos \theta$
$\Delta = \frac{1}{\sin \delta \cos \delta}$	$\cos\beta\cos\delta$	$\cos\beta\cos\delta$
5110 0050	$\cos \gamma \cos \delta$	$\cos\gamma\cos\delta$

 $\cos\alpha\cos\delta - \sin\alpha\sin\delta$ $\cos\beta\cos\delta - \sin\beta\sin\delta$ $\cos\gamma\cos\delta - \sin\gamma\sin\beta$

 $\cos\alpha\cos\delta - \sin\alpha\sin\delta$

Here, two columns C_1 and C_2 are identical.

 $\therefore \Delta = 0.$

Hence, the given result is proved.

Question 16:

Solve the system of the following equations

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$$
$$\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$$
$$\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

Answer

Let
$$\frac{1}{x} = p, \frac{1}{y} = q, \frac{1}{z} = r.$$

Then the given system of equations is as follows:

$$2p+3q+10r = 4$$

 $4p-6q+5r = 1$
 $6p+9q-20r = 2$

This system can be written in the form of AX = B, where

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}, X = \begin{bmatrix} p \\ q \\ r \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

Now,
$$A = 2(120 - 45) - 3(-80 - 30) + 10(36 + 36)$$

$$|A| = 2(120 - 45) - 3(-80 - 30) + 10(36 + 3)$$

= 150 + 330 + 720
= 1200

Thus, *A* is non-singular. Therefore, its inverse exists.

Now,

 $A_{11} = 75, A_{12} = 110, A_{13} = 72$ $A_{21} = 150, A_{22} = -100, A_{23} = 0$ $A_{31} = 75, A_{32} = 30, A_{33} = -24$ $\therefore A^{-1} = \frac{1}{|A|} a d j A$ $= \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$

Now,

$$X = A^{-1}B$$

$$\Rightarrow \begin{bmatrix} p \\ q \\ r \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

$$= \frac{1}{1200} \begin{bmatrix} 300 + 150 + 150 \\ 440 - 100 + 60 \\ 288 + 0 - 48 \end{bmatrix}$$

$$= \frac{1}{1200} \begin{bmatrix} 600 \\ 400 \\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{5} \end{bmatrix}$$

$$\therefore p = \frac{1}{2}, q = \frac{1}{3}, \text{ and } r = \frac{1}{5}$$
Hence, $x = 2, y = 3, \text{ and } z = 5$.

Question 17:

Choose the correct answer.

If *a*, *b*, *c*, are in A.P., then the determinant

 $\begin{array}{cccccc} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{array}$

A. 0 **B.** 1 **C.** *x* **D.** 2*x*

Answer

Answer: A

	x+2	x+3	x+2a	
$\Delta =$	x + 3	x + 4	x+2b	
	<i>x</i> +4	x + 5	x+2c	
	<i>x</i> +2	x + 3	x+2a	
=	x+3	x+4	$x + (a + c) \tag{2}$	b = a + c as a, b , and c are in A.P.
	<i>x</i> +4	<i>x</i> +5	x+2c	
App	lying R	$R_1 \rightarrow R_1$	$-R_2$ and $R_3 \rightarrow R_3 -$	R ₂ , we have:
	-1	-1	a - c	
$\Delta =$	x+3	x + 4	x+(a+c)	
	1	1	c-a	
App	lying R	$R_1 \rightarrow R_1$	$+R_3$, we have:	
	0	0	0	
$\Delta =$	x+3	<i>x</i> +4	x + a + c	
	1	1	c-a	

Here, all the elements of the first row (R₁) are zero. Hence, we have $\Delta = 0$. The correct answer is A. **Question 18:**

Choose the correct answer.

х 0 is z If x, y, z are nonzero real numbers, then the inverse of matrix $A = \begin{bmatrix} 0 \end{bmatrix}$ y 0 $\mathbf{A}.\begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} \mathbf{B}. xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}$ **C.** $\frac{1}{xyz}\begin{bmatrix} x & 0 & 0\\ 0 & y & 0\\ 0 & 0 & z \end{bmatrix}$ **D.** $\frac{1}{xyz}\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}$ Answer Answer: A $A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$ $\therefore |A| = x(yz - 0) = xyz \neq 0$ Now, $A_{11} = yz$, $A_{12} = 0$, $A_{13} = 0$ $A_{21} = 0, A_{22} = xz, A_{23} = 0$ $A_{31} = 0, A_{32} = 0, A_{33} = xy$ $\therefore adjA = \begin{bmatrix} yz & 0 & 0 \\ 0 & xz & 0 \\ 0 & 0 & xy \end{bmatrix}$ $\therefore A^{-1} = \frac{1}{|A|}adjA$

$=\frac{1}{2}$ 0 xz 0	
$\begin{bmatrix} xyz \\ 0 & 0 & xy \end{bmatrix}$	
$\begin{bmatrix} \frac{yz}{xyz} & 0 & 0 \end{bmatrix}$	
$= 0 \qquad \frac{xz}{xyz} \qquad 0$	
$\begin{bmatrix} 0 & 0 & \frac{xy}{xyz} \end{bmatrix}$	
$\begin{bmatrix} \frac{1}{x} & 0 & 0 \end{bmatrix} \begin{bmatrix} x^{-1} & 0 \end{bmatrix}$	0]
$= \begin{vmatrix} 0 & \frac{1}{y} & 0 \end{vmatrix} = \begin{vmatrix} 0 & y^{-1} \\ 0 & 0 \end{vmatrix}$	0
$\begin{bmatrix} 0 & 0 & \frac{1}{z} \end{bmatrix}$	z _
The correct answer is A.	
Question 19:	
Choose the correct answer.	

Let
$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$
, where $0 \le \theta \le 2\pi$, then

A. Det (A) = 0 **B.** Det (A) \in (2, ∞)

C. Det (A) ∈ (2, 4)

D. Det (A)∈ [2, 4]

Answer

sAnswer: D

$$A = \begin{bmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{bmatrix}$$

$$\therefore |A| = 1(1 + \sin^2 \theta) - \sin \theta (-\sin \theta + \sin \theta) + 1(\sin^2 \theta + 1)$$

$$= 1 + \sin^2 \theta + \sin^2 \theta + 1$$

$$= 2 + 2\sin^2 \theta$$

$$= 2(1 + \sin^2 \theta)$$

Now, $0 \le \theta \le 2\pi$
$$\Rightarrow 0 \le \sin \theta \le 1$$

$$\Rightarrow 0 \le \sin^2 \theta \le 1$$

$$\Rightarrow 1 \le 1 + \sin^2 \theta \le 2$$

$$\Rightarrow 2 \le 2(1 + \sin^2 \theta) \le 4$$

$$\therefore Det(A) \in [2, 4]$$

The correct answer is D.