MATRICES

Ex.3.1

Q1. In the matrix A =
$$\begin{bmatrix} 2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17 \end{bmatrix}$$

A.1.(*i*) Order of a matrix ' $m \times n$ ' is the no. of rows, m and no. of column, n So, order of a matrix $A = 3 \times 4$.

(*ii*) a_{13} = element of 1st row and 3rd column = 19 a_{21} = element of 2nd now and 1st column = 35 a_{33} = element of 3rd row & 3rd column = -5 a_{29} = element of 2rd row & 4th column = 12 a_{23} = element of 2nd row & 3rd column = $\frac{5}{2}$

- Q2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
 A.2. As, number of elements of matrix having order m × n = m·n.
 (b) So, (possible) order of matrix with 24 elements are (1 × 24), (2 × 12), (3 × 8), (4 × 6), (6 × 4), (8 × 3), (12 × 2), 24 × 1).
 Similarly, possible order of matrix with 13 elements are (1 × 13) and (13 × 1)
- Q3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
 A.3. As number of elements of matrix with order m × n
 (E) Possible order of matrix with 18 elements are (1 × 18), (2 × 9), (3 × 6), (6 × 3), (9 × 2) and (18 × 1) Similarly, possible order of matrix with 5 elements are (1 × 5) and (5 × 1)
- Q4. Construct a 2 × 2 matrix, $A = \begin{bmatrix} a_{ij} \end{bmatrix}$, whose elements are given by:

(i) $a_{ij} = \frac{(i+j)^2}{2}$ (ii) $a_{ij} = \frac{i}{j}$ (iii) $a_{ij} = \frac{(i+2j)^2}{2}$ A.4. (E) (i) $a^{ij} \frac{(i+j)^2}{2}$ such that i = 1, 2 and $j = 1 \times 2$ for 2×2 matrix Therefore $a_{11} = \frac{(1+1)^2}{2} = \frac{2^2}{2} = 2$ \therefore A $_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $a_{12} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$ $a_{21} \frac{(2+1)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$ $a_{22} = \frac{(2+2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$

(ii)
$$a^{ij} = \frac{i}{j}$$
 such that $i = 1, 2$ and $j = 1, 2$ for 2×2 matrix
Therefore $a_{11}\frac{1}{1} = 1 = 1$ $\therefore A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$
 $a_{12} = \frac{1}{2} = 2$ $= \begin{bmatrix} 1 & 1/2 \\ 2 & 1 \end{bmatrix}$
 $a_{21} = \frac{2}{1} = 2$
 $a_{22} = \frac{2}{2} = 1$
(iii) $a^{ij} = \frac{(i+2j)^2}{2}$ such that $i = 1, 2$ and $j = 1, 2$ for 2×2 matrix
Therefore $a_{11} = \frac{(1+2.1)^2}{2} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$
 $a_{12} = \frac{(1+2.2)^2}{2} = \frac{(1+4)^2}{2} = \frac{5^2}{2} = \frac{25}{2}$
 $a_{21} = \frac{(2+2.1)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$
 $a_{22} = \frac{(2+2.2)^2}{2} = \frac{(2+4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18$.
 $\therefore A_{2\times 2} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix}$

Q5. (i) Construct a 3 × 4 matrix, whose elements are given by: $a_{ij} = \frac{1}{2} \begin{vmatrix} -3i + j \end{vmatrix}$ (ii) $a_{ij} = 2i - j$ A.5. (E) (i) $a^{ij} = \frac{1}{2} \begin{vmatrix} -3i + j \end{vmatrix}$ such that i = 1, 2, 3 and j = 1, 2, 3, 4 for 3 × 4 matrix So, $a_{11} = \frac{1}{2} \cdot \begin{vmatrix} -3.1 + 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -3 + 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -3 + 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -2 \end{vmatrix} = \frac{2}{2} = 1.$ $a_{12} = \frac{1}{2} \begin{vmatrix} -3.1 + 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -1 \end{vmatrix} = \frac{1}{2}$ $a_{13} = \frac{1}{2} \begin{vmatrix} -3.1 + 3 \end{vmatrix} = \frac{1}{2} \times 0 = 0$ $a_{14} = \frac{1}{2} \begin{vmatrix} -3.1 + 4 \end{vmatrix} = \frac{1}{2} |1| = \frac{1}{2}$ $a_{21} = \frac{1}{2} |-3.2 + 1| = \frac{1}{2} |-6 + 1| = \frac{1}{2} |5| = \frac{5}{2}$ $a_{22} = \frac{1}{2} |-3.2 + 2| = \frac{1}{2} |-6 + 2| = \frac{1}{2} |-4| = \frac{4}{2} = 2$

$$a_{23} = \frac{1}{2} |-3.2+3| = \frac{1}{2} |-6+3| = \frac{1}{2} |-3| = \frac{3}{2}$$

$$a_{24} = \frac{1}{2} |-3.2+4| = \frac{1}{2} |-6+4| = \frac{1}{2} + 4| - 2| = \frac{2}{2} = 1$$

$$a_{31} = \frac{1}{2} |-3.3+1| = \frac{1}{2} |-0+1| = \frac{1}{2} |-8| = \frac{8}{2} = 4.$$

$$a_{32} = \frac{1}{2} |-3.2+2| = \frac{1}{2} |-9+2| \neq -\frac{7}{2} = \frac{7}{2}$$

$$a_{33} = \frac{1}{2} |-3.3+3| = \frac{1}{2} |-9+3| = \frac{+4}{2} = \frac{6}{2} = 3$$

$$a_{34} = \frac{1}{2} |-3.3+4| = \frac{1}{2} |-9+4| \neq \frac{|5|}{2} = \frac{5}{2}.$$

$$\therefore a_{3\times 4} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} 1 & 1/2 & 0 & 1/2 \\ 5/2 & 2 & 3/2 & 1 \\ 4 & 7/2 & 3 & 5/2 \end{bmatrix}$$

(ii) aij = 2i-j such that i = 1, 2, 3 and j = 1, 2, 3, 4, for 3×4 matrix So. $a_{11} = 2.1 - 1 = 2 - 1 = 1$ $a_{12} = 2.1 - 2 = 2 - 2 = 0$ $a_{13} = 2.1 - 2 = 2 - 3 = 1$ $a_{14} = 2.1 - 4 = 2 - 4 = -2$ $a_{21} = 2.2 - 1 = 4 - 1 = 3$ $a_{22} = 2.2 - 2 = 4 - 2 = 2$ $a_{23} = 2.2 - 3 = 4 - 3 = 1$ $a_{24} = 2.2 - 4 = 4 - 4 = 0$ $a_{31} = 2, 3-1 = 6-1 = 5$ $a_{32} = 2.3 - 2 = 6 - 2 = 4$ $a_{33} = 2 \cdot 3 - 3 = 6 - 3 = 3$ $a_{34} = 2.3 - 4 = 6 - 4 = 2$ 1 0 1 -2] $\begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$ a_{14} $a_{2\times 2} = a_{21} a_{22} a_{23}$ 3 2 *a*₂₄ 0 . = 1 5 4 $a_{31} a_{32}$ *a*₃₃ a₃₄ 3 2

Q6. Find the values of x, y and z from the following equations:

(i)
$$\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$$
 (ii) $\begin{bmatrix} x+y & 2 \\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2 \\ 5 & 8 \end{bmatrix}$ (iii) $\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$
A.6. (i) $\begin{bmatrix} 4 & 3 \\ x & 5 \end{bmatrix} = \begin{bmatrix} y & z \\ 1 & 5 \end{bmatrix}$
corresponding
By equating the elements of the matrices, we get,

 $\begin{array}{c} x=1\\ y=4 \end{array}$

y = 4z = 3.

(ii)
$$\begin{bmatrix} x+y & 2\\ 5+z & xy \end{bmatrix} = \begin{bmatrix} 6 & 2\\ 5 & 8 \end{bmatrix}$$

By equating the corresponding elements of the matrices we get,
 $x+y=6-(1)$
 $5+Z=5\Rightarrow z=5-5\Rightarrow z=0$
 $xy=8$
 $\Rightarrow x=\frac{8}{y} \rightarrow (2)$
putting eqⁿ(2) in (1) we get
 $\frac{8}{y} + y = 6$.
 $\Rightarrow 8+y^2 = 6y$
 $\Rightarrow y^2 - 6y + 8 = 0$.
 $\Rightarrow y^2 - 4y - 2y + 8 = 0$
 $\Rightarrow y (y-4) - 2 (y-4) = 0$
 $\Rightarrow (y-4) (y-2) = 0$
 $\Rightarrow y=4 \text{ Or } y = 2$.
When $y = 4, x=6-y=6-4 = \text{ and } z=0$.
When $y = 4, x=6-y=6-2 = 4$ and $z=0$.
(ij)
$$\begin{bmatrix} x+y+z\\ x+z \end{bmatrix} = \begin{bmatrix} 9\\ 5 \end{bmatrix}$$
.

$$\begin{bmatrix} x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

By equating the corresponding elements of the matrices we get, x+y+z=9 — (i) x+z=7 — (ii) y+z=7 — (iii) Subtracting eqⁿ (3) from (1) and (2) from (1) we get, x+y+z-y-z=9-7 and x+y+z-x-z=9-5 $\Rightarrow x=2$ and y=4. Putting x = 2 in eqⁿ (2) 2+z=5 $\Rightarrow z=5-2=3$. So, x = 2, y = 4, z = 3.

Q7. Find the value of *a*, *b*, *c* and *d* from the equation:

$$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$$

A.7.
$$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$$

(5) Equating the corresponding elements of the matrices we get, a-b = -1 —(i)

$$a-b = -1 - (1)$$

$$2a + c = 5 - (2)$$

$$2a-b = 0 - (3)$$

$$3c + d = 13 - (4)$$

Subtracting eqⁿ(1) from (3) we get, 2a-b-(a-b) = 0-(-1) 2a-b-a+b = 0+1 = 1 $\Rightarrow [a=1]$ Put a = 1 in eqⁿ(2) we get, $2 \times 1 + c = 5 \Rightarrow c = 5 - 2 \Rightarrow [c = 3]$ Put c = 3 in q^n (4) we get, $3 \times 3 + d = 13 \Rightarrow d = 13 - 9 \Rightarrow [d = 4.]$ put a = 1 in q^2 (1) we get, $1-b = -1 \Rightarrow b = 1+1 \Rightarrow [b=2]$

(C) $\mathbf{m} = \mathbf{n}$

Q8. $\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}_{m:m}$ is a square matrix, if

(A) m <n

(B) m > n

(D) None of these

A.8. = $\begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ is a square matrix if m = n(E) Option C is correct.

Q9. Which of the given values of x and y make the following pair of matrices equal: $\begin{bmatrix} 3x+7 & 5\\ y+1 & 2-3x \end{bmatrix}, \begin{bmatrix} 0 & y-2\\ 8 & 4 \end{bmatrix}$ (A) $x = \frac{-1}{3}, y = 7$ (B) Not possible to find (C) $y = 7, x = \frac{-2}{3}$ $x = \frac{-1}{3}, y = \frac{-2}{3}$ **(D**) A.9. For the matrices to be equal, the corresponding elements (B) heed to be equal so, For a_{11} , 3x + 7 = 0 \Rightarrow 3x = -7. $\Rightarrow x = -\frac{7}{3}$ 5 = y - 2fora₁₂, \Rightarrow y = + 5 + 2 = 7. For a_{21} , y + 1 = 8 \Rightarrow y = 8-1 = 7. 2-3x = 4.fora₂₂, \Rightarrow 3*x* = 2–4 $\Rightarrow x = -\frac{2}{3}$

As the variable *x* and *y* has more than one value which is not peacetable. Option B is correct.

Q10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is: (A) 27 (B) 18 (C) 81 (D) 512

A.10 . A 3×3 order matrix will have 9 elements

(M) Since, the elements can be either 1 or ^{0il}, number of choices for each element is 2.

The required no. of arrangement = $29(4, 2 \times 2 \times 2 \text{ 9 times}) \Longrightarrow 512$ So, option D is correct.